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Abstract

We suggest a new representation of defeasible entailment and
specificity in the framework of default logic. The representa-
tion is based on augmenting the underlying classical language
with the language of conditionals having its own (monotonic)
internal logic. It is shown, in particular, that inheritance rea-
soning can be naturally represented in this framework, and
generalized to the full classical language.

Introduction

The problem of nonmonotonic, defeasible inference can be
seen as the main objective, as well as the main problem of
the general theory of nonmonotonic reasoning. An impres-
sive success has been achieved in our understanding of it,
and mainly in realizing how many different forms and as-
pects it has. Many formalisms have been developed and im-
plemented that capture significant aspects of nonmonotonic
inference, though a unified picture has not yet been emerged.
In this study we will suggest a new representation of defea-
sible inference in default logic that combines, in effect, the
insights and advantages of a number of previous approaches
to this problem, hopefully without inheriting their shortcom-
ings.

Suppose we have a default rule A — B saying “A nor-
mally implies B”. On a most natural, commonsense un-
derstanding, such a rule represents a claim that A implies
B, given some additional (unmentioned and even not fully
known) assumptions that are presumed to hold in normal
circumstances. Thus, a default causal rule TurnKey —
CarStarts states that if I turn the key, the car will start
given the normal conditions such as there is a fuel in the
tank, the battery is ok, etc. etc. An important aspect of
our understanding of such default rules is that the default
assumptions required for different rules, say A — B and
A — C, are usually presumed to be independent. Conse-
quently, a violation of A — B does not imply rejection of
A — C. Note that already this presumption is incompatible
with the usual assumptions about normality made in prefer-
ential inference (see (Kraus, Lehmann, & Magidor 1990)):
according to the latter, a violation of A — B means that the
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situation at hand is abnormal with respect to A , so we are
not entitled to infer anything that normally follows from A.
Consequently, default reasoning is not directly captured by
the preferential approach.

It was John McCarthy (see (McCarthy 1980; 1986)) who
has suggested to represent default rules A — B as classi-
cal implications of the form A A —ab O B, where ab is a
new ‘abnormality’ proposition that accumulates the condi-
tions for rejection of the source rule. In fact, viewed as a
formalism for nonmonotonic reasoning, the central concept
of McCarthy’s circumscriptive method is not circumscrip-
tion itself, but his notion of an abnormality theory - a set of
classical conditionals containing the abnormality predicate
ab that provides a representation for default information.

McCarthy’s representation can be seen as a particular in-
stantiation of our description above, where —ab serves as
an abstract representation of the default assumptions re-
quired for the inference in question. The default charac-
ter of these assumptions was captured in McCarthy’s the-
ory by a circumscription policy that minimized abnormality
(and thereby maximized the acceptance of the correspond-
ing normality claims —ab). Since then, this representation
of default rules using auxiliary (ab)normality propositions
has been employed both in applications of circumscription,
and in many other theories of nonmonotonic inference in
Al, sometimes in alternative logical frameworks. Some ma-
jor examples are inheritance theories (Etherington & Reiter
1983), logic-based diagnosis (Reiter 1987), general repre-
sentation of defaults in (Konolige & Myers 1989) and rea-
soning about time and action. Note also that naming of de-
faults (as in (Poole 1988)) can also be viewed as a species of
this idea. Finally, the approach described below can also be
seen as a development of this representation.

Abnormality theories have brought out, however, several
problems in the application of circumscription to common-
sense reasoning. One of the most pressing was the speci-
ficity problem arising when there are conflicting defaults.
In combining two defaults, “Birds fly” and “Penguins can’t
fly”, the specificity principle naturally suggests that the sec-
ond, more specific, default should be preferred. A general
approach to handle this problem in circumscription, sug-
gested in (Lifschitz 1985) and endorsed in (McCarthy 1986),
was to impose priorities among minimized predicates and
abnormalities. The corresponding variant of circumscription



has been called prioritized circumscription.

In reading McCarthy’s papers on circumscription, one
cannot help feeling uneasiness with which he adopts the ab-
normality predicates into the language, since he thought that
this compels us to introduce abnormalities as new entities
into our ontology (the things that exist). Moreover, in its de-
veloped form, described in (McCarthy 1986), the represen-
tation required a relativization of abnormality claims with
respect to particular aspects, so that some aspects can be ab-
normal without affecting others. This modification was re-
quired in order to cope with the above mentioned presump-
tion about independence of default assertions with the same
antecedent and different conclusions. As was noted by Mc-
Carthy, the aspects themselves are abstract entities, and their
unintuitiveness is somewhat a blemish on the theory.

Our approach below is based on the idea that the above
(ab)normality propositions can be assigned a natural mean-
ing that would also facilitate their conscious and coherent
use in nonmonotonic reasoning. More specifically, we ar-
gue that the default assumptions of a defeasible rule A — B
provide a link (an information channel) that sanctions the in-
ference from A to B. In other words, they jointly function
as a conditional, that we will denote by A/ B, that, once ac-
cepted, allows us to infer B from A. Accordingly, we will
slightly ‘unfold’ the normality assumption —ab, and repre-
sent A — B as the classical implication A A (A/B) D B.
The default character of this inference will be captured by re-
quiring that A normally implies A/B, that is, A—(A/B).
It will be shown below, however, that the latter rule can be
represented simply as Reiter’s normal default.

It is important to note that the change we have made so far
to McCarthy’s representation is purely terminological. This
means, in particular, that the implementation of the theory
of defeasible inference that will be described in the sequel
can be made, in principle, by switching back to abnormal-
ity predicates and established formalisms of dealing with
them. The new representation naturally suggests, however,
that the (ab)normality claims should have its own internal
logic. In fact, we will stipulate below that the conditionals
A/ B should satisfy at least the usual rules of supraclassi-
cal Tarski consequence relations. It is this internal logic that
will allow us to formulate purely logical principles that will
govern a proper interaction of defeasible rules in cases of
conflict.

The Language and Logic of Conditionals

Our basic language Ly will be a classical propositional lan-
guage with the usual connectives and constants {A, V, =, D
,t,f}. E will stand for the classical entailment, while Th
will denote the associated provability operator.

As afirst step, we will augment the language L by adding
new propositional atoms of the form A/B, where A and B
are classical propositions of Lg. The conditionals A/B will
be viewed as propositional atoms of a new type, so nesting
of conditionals will not be allowed. Still, the new proposi-
tional atoms will be freely combined with ordinary ones us-

'A similar representation lies at the basis of the approach de-
veloped in (Geffner 1992).

ing the classical propositional connectives. We will denote
the resulting language by L..

The essence and main functional role of our conditionals
will be expressed by adopting the following axiom:
MP (AANA/B)DB.

In addition, conditionals will be viewed as ordinary infer-
ence rules that are ‘reified’ in the object language. Accord-
ingly, we will require them to satisfy the inference rules of a

supraclassical Tarski consequence relation. It can be shown
that the following postulates are sufficient for this purpose:

If AF B, then A/B. (Dominance)
A/B B/C .
T (Transitivity)

A/B A/C
A/(BAC) (And)

Remark. The above conditional logic can be given a com-
plete semantic interpretation. In fact, our conditional logic
coincides with the logic of monotonic consequence rela-
tions, sketched in (Kraus, Lehmann, & Magidor 1990), and
the semantics of simple preferential models, described in
that paper (namely, models with an empty preference re-
lation) has been shown to be adequate for the latter. The
semantic representation of our language will play no role in
our subsequent constructions, however, so we will omit its
detailed description.

It should be noted that the above logic describes the log-
ical properties of arbitrary conditionals, not only default
ones. The difference between the two will be reflected in the
representation of defeasible conditionals in the framework
of default logic, described next.

Defeasible Inference in Default Logic

We will describe now a modular representation of defeasible
rules A — B in Reiter’s default logic (Reiter 1980). Due to
space limitations, we will refrain from a detailed description
of default logic, but only fix the notation.

A default theory is a pair (W, D), where W is a set classi-
cal propositions (the axioms), and D is a set of default rules
of the form A : b + C, where A, C are propositions and b
a finite set of propositions. A is called a prerequisite of the
rule, b a set of its justifications, and C - its conclusion. The
notion of an extension of a default theory is defined as usual:
for a set s of propositions, we define D(s) as the set of all
propositions that are derivable from W using the classical
entailment and the following inference rules:

{AFC|A:b-CeD&-B¢s, forany B € b}.

Then s is an extension of the default theory iff s = D(s).?

For the present case, we will suppose that our default the-
ory is defined in the conditional language L. and respects
the corresponding logic of conditionals, that is, W includes
MP and Dominance axioms®, while D includes Transitivity
and And as strict rules (without justifications).

2Cf. (Gelfond er al. 1991) for a similar definition.
*Namely, W should include all A/B such that A = B.



Now, for each defeasible rule A— B, we accept the nor-
mal default
A:A/BF A/B.

Finally, we have two natural options for representing
strict (non-defeasible) rules in this framework. A more cau-
tious understanding would lead to representing a strict rule
A= B as astrict default rule A : - B without justifications.
A more ‘classical’ understanding would amount to repre-
senting A = B as a material implication A O B; this could
be achieved in our framework simply by adding A/ B to the
set W of axioms.

Specificity and Commitment

The default theory described so far is still insufficient, of
course, for capturing defeasible inference, since it does not
take into account the principle of specificity. In fact, it can be
shown that such a default theory is practically indistinguish-
able from the default theory obtained by representing every
defeasible rule A — B as a normal defaultrule A : B+ B.

Fortunately, we now have sufficient means for expressing
the specificity principle in a simple and transparent way. The
formulation of this principle, given below, can be seen as the
main contribution of this study.

Taken literally, the specificity principle states that more
specific default rules should override less specific rules in
the case of conflict. In a simplest case, this pertains to the
conflict between the rules A — C and A A B — —=(C, in
which case the second rule should override the first. There
are, however, less direct cases in which one of the conflicting
rules is deemed more specific than the other, and, as we all
know, the literature is abundant with the attempts to define a
more general notion of specificity.

We claim that the specificity principle is a consequence
of a more general principle that we will call the principle of
commitment. According to the latter, by asserting a defea-
sible rule “If A, then normally B”, we are also committing
ourselves to the claim that no combination of accepted rules
could allow us to infer =B from A. A clear expression of
this principle can be found already in (Poole 1990):

“if “p’s are q’s” is a default and if we know p(c), then
all of the objections that could be raised about q(c) that
follow from p(c) have already been taken into account
when building the knowledge base.”

The principle of commitment is related also to the princi-
ple of direct inference stated in (Geffner 1992). According
to the latter, if A— B is accepted, then A should always im-
ply B in the case A is the only evidence we have.

For our present purposes, a special case of the commit-
ment principle can be expressed as follows: If A — Bis a
default rule, and A is known to hold, then any conditional of
the form A/C can be accepted only if we reject the condi-
tional C'/—B (otherwise we would have a counterargument
against A — B).

Commitment
proposition C,

If A — B is accepted, then, for any

A,A/C i ~(C/-B).

As an important special case, the commitment principle
implies that acceptance of A — B compels us to reject the
opposite conditional (since A/A always holds):

Ak ~(A/=B).

As a result, if we have both A — B and A — =B in
the default theory, each of the corresponding conditionals
A/B and A/-B will be ‘disabled’, so no conclusion will be
derived from them.

The following couple of examples will show the impact
of accepting the above commitment principle.

Example 1. Consider a generalized Penguin-Bird theory
{P—B,B—F, P——F}. As could be expected, given the
fact B, the corresponding default theory has a unique exten-
sion that contains B and F'. Now, given the fact P instead,
the resulting default theory also has a unique extension that
includes this time P, B and —F. The spurious extension
containing F'is blocked due to the commitment principle for
P — —F thatimplies P, P/B :+ —(B/F). Note, however,
that the situation is not symmetric, since the commitment to
B — F' does not allow us to reject P — —F'.

The following example from (Dung & Son 2001) shows
that the above representation deals correctly with the in-
terplay of specificity and evidence, unlike the representa-
tions such as prioritized circumscription or Geffner’s con-
ditional entailment that are based on establishing context-
independent priorities among default rules.

Example 2. Let us consider the following default theory
{A—=M, S—-M, S—Y, Y = A} that represents, respec-
tively, default assertions that adults are normally married,
students are normally not married, students are normally
young adults, and the strict rule “young adults are adults”.
For the evidence S, the corresponding default theory will
have a single extension containing —M/. This extension
will contain also S/Y and Y/A, so it will include S/A (by
Transitivity). As a result, the default conditional A/M will
be rejected in this case due to the commitment to S —
- M. Note, however, that the ‘priority’ of S — —M over
A — M is not absolute here, since it depends on the accep-
tance of S/A. Accordingly, given a more specific evidence
S A=Y A A, the conditional S/A will no longer be accept-
able (since the default S/Y is refuted by MP), so the result-
ing default theory will have two extensions, one containing
M, another containing =M. In other words, as should be
expected, the marital status of non-young students cannot
be decided.

As a matter of fact, the commitment principle constitutes
a generalization of the specificity rules stated in (Dung &
Son 2001) and especially in (You, Wang, & Yuan 1999)
(the latter being formulated, however, in the framework of
logic programming). As a result, we have an opportunity to
provide a straightforward representation of defeasible inher-
itance in our framework.

Defeasible Inheritance

Defeasible inheritance nets is a logical framework that has
been originally designed to capture reasoning in taxonomic
hierarchies that allowed to have exceptions. The theory of



reasoning in such taxonomies has been called nonmonotonic
inheritance (see (Horty 1994) for an overview). The guiding
principle in resolving potential conflicts in such hierarchies
was a specificity principle ((Poole 1985; Touretzky 1986)):
more specific information should override more generic in-
formation in cases of conflict. Though obviously related to
nonmonotonic reasoning, nonmonotonic inheritance relied
more heavily on graph-based representations than on tradi-
tional logical tools. Nevertheless, it has managed to provide
a plausible analysis of reasoning in this restricted context.

Let I" be a consistent defeasible inheritance network. A
credulous extension of I' is defined as usual (see the Ap-
pendix), with the only simplification that it is restricted to
the set of paths from object nodes (as in (You, Wang, &
Yuan 1999)).

For a propositional atom ¢, ¢ will denote a corresponding
literal, that is either ¢, or —¢q, while —¢ will denote the literal
complementary to q.

D(T') will denote the default theory corresponding to I" as
follows*:

e any object link will correspond to an axiom p € W

e every defeasible link will correspond to a defeasible rule
of the form p — ¢, so p : p/¢ F p/ will be added to the
default rules, as well as the corresponding Commitment
rule:

P, p/C - =(C/=q).

Then the following theorem shows, in effect, that the re-
sulting default theory provides an exact formalization of de-
feasible nets.

Theorem. A set of paths ® is a credulous extension of T’
if and only if there is an extension u of D(T') such that ®
coincides with the set of paths constructed from the set of
links {p — GeT|p/je u}

The gain in simplicity and modularity provided by the
above representation could be made vivid by comparing it
with the much more complex translation of defeasible inher-
itance into default logic described in (Dung & Son 2001).

Conclusions

Nonmonotonic reasoning is not just a syntax plus nonmono-
tonic semantics. An account of the underlying logic behind
our commonsense reasoning can provide an immense im-
provement in the quality of representations. In our case, it
has been shown that when the normality assumptions medi-
ating defeasible rules are represented as conditionals having
a relatively simple underlying logic, the resulting represen-
tation has allowed us to capture defeasible inheritance and
specificity, generalized to the full classical language. Fur-
thermore, all that was required to achieve a proper nonmono-
tonicity in this logical setting was the basic formalism of
Reiter’s normal defaults.

*In order to simplify the representation, we will only consider
defeasible networks without strict links.
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Appendix. Proof of the Theorem

A defeasible inheritance network I' is a tuple (N, E') where
N is a set of nodes and F a set of positive and negative links
between nodes. Nodes are divided into two disjoint classes:
object nodes, and property nodes. An object node can only
be used as a root node. A link is called an object link if its
root is an object node. A path is a sequence of links such that
the head of a preceding link coincides with the root of the
next link in the sequence, and all the links in the sequence,
except possibly the last, are positive. A path is positive, if
all its links are positive, otherwise it is a negative path.

Path constructibility. Suppose that ® is a path set of I". A
path o is constructible in @ iff (i) it is an object link, or (ii)
o consists of a prefix 7 € ® and the last link that belongs to
E.

Conflict. A positive (res., negative) path o is conflicting in
® iff o € ¢ and ® contains a negative (resp., positive) path
with the same beginning and end nodes.

Off-path preemption. Defined as usual.

A path o is defeasibly inheritable in ® iff it is con-
structible, not conflicting and not preempted in .

Definition. A set ® of paths is a credulous extension of a
net I if it coincides with the set of paths that are defeasibly
inheritable in ®.

Theorem. A set of paths ® is a credulous extension of T’
if and only if there is an extension u of D(T') such that ®
coincides with the set of paths constructed from the set of
links {p — GeT |p/G e u}

Proof. (=) If ® is a credulous extension of T', let I(P) be
the set of all non-object links appearing on paths of ®. Also,
let R = {p/G | p — ¢ € I(P)}, and define CI(R) to be
the set of all conditionals A/B that are derivable from R by
the rules Dominance, Transitivity and And. It can be easily
shown that p/¢ € CI(R) if and only if ® contains a path via
p to g (cf. Lemma C3 in (Dung & Son 2001)).

Let u be the closure of the set W U R with respect to the
classical entailment and the strict rules of D(T"), i.e., Tran-
sitivity, And and Commitment.

Lemma 1. If q is a propositional atom, then § € u iff ®
supports q.

Proof. 1f g is supported by ®, there is a path o in ¢ from an
object link to §. Since p;/p;+1 € u, for any link p; — p;4+1
on this path, we have p; O p;+1 € u (by MP). Clearly then
g € u. To prove the other direction, we define a propo-
sitional theory v = Th(vs U CI(R) U N(R)), where v,
is the set of ordinary literals that are supported in ®, and
N(R) = {-(A/B) | A/B ¢ CI(R)}. Note that, for
any conditional atom A/B, we have either A/B € v, or
—(A/B) € v. We will show that u C v.

We will demonstrate first that if A/B € CI(R), then v, F
A D B, by induction on the derivations of A/B. If p/¢ € R,
then ® contains a path that includes p — ¢, so § is supported,
and consequently vs F p D §. Now, if A F B, then clearly
vs E A D B.If A/(BAC) has been obtained from A/ B and
A/C by the rule And, thenvs E A D Bandvs F A D C
by the inductive assumption, so vs E A D B A C. The proof

is similar if A/C has been obtained from A/B and B/C by
Transitivity. Hence the claim holds.

Now we can show that the axiom MP belongs to v. If
A/B ¢ v, then ~(A/B) € v,s0 AN (A/B) D B € w.
Assume that A/B € wv. Then by the preceding claim
vs F'A D B, and hence again A A (A/B) D B € w.
Consequently, all the axioms of D(T") are included in v. In
addition, v is closed with respect to Transitivity and And
(since it includes CI(R)). Finally, we will show that v is
closed wrt the commitment rules. Suppose thatp — ¢ € T,
p € v, p/A € v, but ~(A/—§4) ¢ v. Then A/~§ € v, and
consequently p/—¢ € v by Transitivity. The latter implies
p/—q € CI(R), and hence ® should contain a path o from
an object link via p to =g, which is impossible, since it is
preempted by p — ¢. Thus, v includes W and is closed wrt
all the strict rules of D(T"). Consequently, u C v.

Assume now that ¢ is not supported in ®. Clearly, vy
is exactly the set of ordinary literals in v, so § ¢ v, and
therefore ¢ ¢ w. This completes the proof of the lemma. [

We will show now that w is an extension of D(T"), that is,
u = D(u).

For the inclusion v C D(u), we show first that if p—¢ €
[(®), then p A (p/§) € D(u). Now, p—¢ € I(P) only
if ® contains a path o that supports p. We will prove the
claim by induction on the length of o. If p—¢ is the first
non-object link, then p € W. In addition, we can apply
p: p/qt p/qto derive p/§ (since p/§ € u). Assume now
that o is a path of length n having r—p as the last link. By
the inductive assumption, r A (r/p) € D(u), so p € D(u)
by MP: 7 A (r/p) D p. Consequently, p/§ € D(u) by the
rule p : p/¢ F p/d, and we are done.

The above claim implies {p/§ | p — ¢ € I(®)} C
D(u), so by the definition of u we immediately conclude
u C D(u).

For the inclusion D(u) C u, it is sufficient to show that
w is closed with respect to all the rules of the default theory
D(T). First, u includes W. Suppose that p—¢ € I" but the
rule p : p/G F p/§ does not hold in u, thatisp € u, p/§ ¢ u
and —(p/q§) ¢ u. Now, p/§ ¢ u implies p—¢ ¢ (D), which
can happen only if it is either conflicted or preempted in P.
Suppose first that p—¢ is conflicted in ®. Then —¢ is sup-
ported by ®, and hence —§ € u. Consequently —(p/G) € u
by MP, contrary to our assumptions. Suppose now that p—¢
is preempted in ®. Then I' contains a link 7——¢g such that
there is a positive path o via r to p in ®. Let us consider
the sub-path of o from r to p. Since p;/p;+1 € u, for
any link p; — p;4+1 that belongs to this sub-path, we ob-
tain r/p € wu by transitivity. Then by the commitment rule
—(p/q) € u contrary to our assumptions. The obtained con-
tradiction shows that u is closed with respect to all the rules
of D(T), and consequently D(u) C w holds.

Finally, we have to show that [(®) coincides with {p —
GeT |p/q€u}. Assumethatp — ¢ € I'and p/§ € u. By
the construction of u, this can happen only if p/§ € CI(R),
and therefore there is a path in ® of the form op7q. Let us
consider the path o1 = op—¢. This path is constructible in
®, and it is clearly neither conflicted, nor preempted in P.
Since ® is a credulous extension, we conclude o; € ®, and



therefore p — ¢ € I(D).

(<) Suppose that u is an extension of D(T"), and define ®
to be the set of paths constructed from the object links and
the links {p — ¢ € I' | p/G € u}. Let ug denote the set
of all literals that are supported by ®. If p € ug, there is a
path o € ® from an object link to p. Since p; /p;+1 € u, for
any link p;, — p;41 on this path, we have p; D p;+1 € u
(by MP). Clearly then p € u. In addition, we will need the
following

Lemma 2. A € uonly ifue E A, and A/B € w only if
up F A D B.

Proof. Since u = D(u), we will prove these two claims by
a simultaneous induction on the derivations in D(u).

If p € W since p corresponds to an object link, then
clearly p € ug. Also, if A/B € W by Dominance, then
AFE B,and hence ug F A D B.

If p/ g has been obtained by the defaultrule p : p/G F p/4,
then p — ¢ € ® and p € w. By the inductive assumption,
up F p, SO p € ug, and hence p is supported by ®. There-
fore, ¢ is also supported by ®, and hence ug F p D q.

If A/(B A C) has been obtained from A/B and A/C by
the rule And, then ug F A D B and ug F A DO C by the
inductive assumption, so u¢ F A O B A C. The proof is
similar if A/C has been obtained from A/B and B/C by
Transitivity.

Finally, the axiom A A A/B > B cannot be used for de-
riving new conditionals, but only for deriving A O B when
A/ B has been proved. But in this case ug F A D B already
by the inductive assumption, and we are done. O

Now we will show that ® is a credulous extension of I'.
We will prove first that ® is defeasibly inheritable in ®, that
is, any path in @ is constructible, conflict-free and not pre-
empted in ®. Now, any path in ® is constructible by the
definition. If there is a conflicted path in ®, then there is an
atom p, such that both p and —p belong to u, which is impos-
sible. Finally, assume that o is a preempted path in ®, and
p — q is the last link on ¢. Then there exist a link r——¢
and a path 7 via r to p that belongs to ®. Now, p/§ € wu,
and p; /p;+1 € u, for any link p;—p; 1 on the sub-path of 7
from r to p. Therefore, r/p € u and hence by commitment
—(p/d) € u - a contradiction. Therefore, o is not preempted
in ®.

Finally, we will show that any path that is defeasibly in-
heritable in ® also belongs to ®. Suppose that o is defeasibly
inheritable in ®. If it is an object link, it is in ®. Assume
that o is composed of a prefix 7 € ® and the last link p — q.
Then p is supported in ®, and therefore p € u. Next we are
going to show that =(p/§) ¢ u. Suppose that ~(p/q) € u.
Since u = D(u), we have that —(p/§) should be derivable
from W using the strict and active normal default rules of
D(T"). As can be seen, this can happen only if —(p/q) is
obtained either (i) from the axiom MP when p A =¢ € u, or
(ii) by the commitment rule r, 7 /p :  —(p/§), given a link
r——q € I' and the fact r/p € u. In the case (i) we have
that —q is supported by ®, and therefore o is conflicted in
®, contrary to our assumptions. In the case (ii) we have that

there should be a path in ® via r to p, and therefore o is pre-
empted in @, which is impossible. Thus, =(p/§) ¢ u, and
hence we can apply the default rule p : p/¢ F p/§ and con-
clude p/§ € w. It then follows that ¢ € ®. This completes
the proof. [



