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Abstract

Reiter’s default logic is supposed to reasoning on consis-
tent knowledge; when inconsistencies or contradictions are
present in a default theory, no useful conclusions can be ex-
tracted. In the past years, fragments and variants of the de-
fault logic are proposed to avoid or handle inconsistencies or
contradictions. Unfortunately, the expressive and reasoning
power of these fragments are strictly weaker than the full ver-
sion of Reiter’s default logic, and the semantics of the vari-
ants are changed even when the default theory is consistent
and contradiction-free. In this paper, we propose a paracon-
sistent Annotated Default Logic, in which, the existence of
non-trivial annotated extensions is guaranteed. In addition,
the same conclusions are extracted as Reiter’s default logic
does, as long as the default theory has non-trivial extensions
in Reiter’s default logic. As a consequent, the intended mean-
ing of the default theories are kept unchanged when shifting
to our method. As a by product, the extra information pre-
sented in the annotated extensions can help the users in ana-
lyzing and modifying their knowledge representations.

Introduction
Reiter’s default logic (Reiter 1980) was studied widely for
its clarity in syntax as well as strong power in knowledge
representation. However, Reiter’s default logic is supposed
to reason with consistent knowledge: even a single inconsis-
tence or contradiction presented in the premise will lead to
the triviality or non-existence of extensions.

One might take the viewpoint that default theories with-
out extensions are illegal or problematic, and the user has the
responsibility of providing a “good” one. They hope to find
out and/or characterize those coherent fragments (i.e. the ex-
istence of extensions is guaranteed) of default logic. Among
them there are normal (Reiter 1980), ordered (Papadimitriou
& Sideri 1994), and strongly stratified (Cholewinski 1995)
default logics. Not surprisingly, such fragments are strictly
less expressive than the default logic.

Another view regards all default theories as legal and pro-
vide extensions for them. This viewpoint is supported by
the trend of heterogeneous data sources and the fact that
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it is time-consuming to point out whether a default the-
ory is a “good” one. If the premise in not so “good”,
that is, no extensions exists in Reiter’s default logic, a
“robust” logic can draw some conclusions. In order to
get a “robust” default logic, some researchers try to mod-
ify the definition of extension in such a way that all de-
fault theories have at least one extensions, such as con-
straint default logic (Schaub 1992) and justified default
logic (Lukaszewicz 1984). Regarding the inconsistences
among formulas which lead to the trivial extension, some
researchers refer to paraconsistent logics (daCosta 1974;
Lin 1996), multi-valued logics in particular (Belnap 1977;
Arieli & Avron 1998; Ginsberg 1988). The bi-default logic
(Han 2004) and the four-valued default logic (Yue & Lin
2005; Yue, Ma, & Lin 2006) are two examples. Unfortu-
nately, the semantics of these logics are different from that
of Reiter’s default logic, even when the default theories are
consistent and contradiction-free. As a direct consequent,
the intended meaning of the default theories are changed un-
der these semantics. This is arguably an important reason
why these variants are not accepted and used so widely.

Different from all the above, we try to preserve the in-
tended meaning of default theories as well as to preserve the
strong expressive and reasoning power of Reiter’s default
logic simultaneously. Every default theory has non-trivial
annotated extensions under the semantics defined in this pa-
per. Further more, when a default theory have extensions in
Reiter’s default logic, our method draws the same conclu-
sions as Reiter’s default logic does. In addition, inconsisten-
cies among formulas and contradictions among defaults are
all annotated out, which provide meaningful hints for why
the default theories are not so “good” as the user wanted.

We also visualize, by some examples, how our method
can be used to analyze the default theories, when inconsis-
tences and/or contradictions are present. As a by product,
our method can be used as a diagnostic tools to help in cor-
recting their representation or enhancing the performance of
the system. The formal study on this topic is out of the range
of this paper, and we will further the discussions in future
work.

The approach of annotating formulas has been broadly
studied in logic programming (e.g. (Subrahmanian 1987;
Damasio, Pereira, & Swift 1999; Vennekens, Verbaeten, &
Bruynooghe 2004) among others). But when classical nega-



tion is present, the annotated logic programs are not neces-
sarily have model(s). In contract, in the annotated default
logic, non-trivial annotated extensions exist for any default
theory.

The rest of the paper is organized as follows. In the next
section, we briefly review Reiter’s default logic, and discuss
the incoherence and multi-extensions problem of the default
logic and then we present the underlying logic of the anno-
tated default logic. In Section 3, we introduce the annotated
default logic in detail. Then in Section 4, we compare the
annotated default logic with Reiter’s default logic in detail,
and visualize how to analyze the default theories with the
annotated default logic by some examples in Section 5. Af-
ter discussing some related works in Section 6, we conclude
this paper in Section 7.

Default Logic
Default Logic
In this paper, we denote L as a propositional language. A
theory is a set of formulas in L, and Th is the consequence
operator.

A default is an inference rule of the form α:β1,··· ,βn

γ , (n ≥
1) where α, β1, · · · , βn and γ are formulas in L. α is
called the prerequisite, β1, · · · , βn the justifications, and γ
the consequence of the default. A default theory is a pair
T = (W,D), where W is a set of formulas, and D is a
set of defaults. A default is normal if it is of the form α:β

β ,

and a default is semi-normal if it is of the form α:β∧γ
γ . A

default theory T is semi-normal if all defaults in T are semi-
normal. Janhunen proved that Reiter’s default logic and its
semi-normal fragment are of equally expressive power (Jan-
hunen 2003).

A default theory may have none, a single or multiple (de-
fault) extensions defined by:

Definition 1 ((Reiter 1980)) Let E be a set of formulas,
and T = (W,D) be a default theory. Define

E0 = W

and for all i ≥ 0

Ei+1 = Th(Ei) ∪
{
γ

∣∣∣∣α : β1, · · · , βn

γ
where α ∈ Ei

and ¬β1 6∈ E, · · · ,¬βn 6∈ E}

Then E is an (default) extension of T iff E =
⋃∞

i=0Ei

A default theory is called coherent if it has at least one ex-
tension, otherwise, it is called incoherent. A default theory
may also have a trivial extension, which contains all formu-
las of L.

Theorem 1 ((Reiter 1980)) A default theory T = (W,D)
has a trivial extension iff W is inconsistent.

Inconsistences and Contradictions
In the previous subsection, we have seen that a default theory
may have none or a trivial extension.

The triviality of the default logic originates from its un-
derlying logic, which can not handle inconsistences among
formulas, and the incoherence of default logic comes from
the fact that it can not handle contradictions brought up by
defaults D (with W involved).

Example 1 Consider the following four default theories
Ti = (Wi, Di), i = 1, 2, 3, 4 where

• W1 = ∅, D1 = { :p
q ,

p
¬q}.

• W2 = {q}, D2 = { :p
¬q}.

• W3 = ∅, D3 = { :p
¬p}.

• W4 = ∅, D4 = { :p
q ,

q:r
¬p}.

It is easy to verify that none of T1, T2, T3, T4 has extensions.

In another hand, any two extensions of a default logic
can not be put together to obtain another extension, because
some defaults can not be applied at the same time:

Example 2 D = { :¬p
q , :¬q

p }, and W = ∅. Default theory
T = (W,D) has two nontrivial extensions, Th({p}) and
Th({q}). In this example, one default says that p is true
unless q is ture, while the other says that q is true unless p
is true. Surely, these two defaults are incompatible. There-
fore, they are split into two extensions, one contains the first
default and the other contains the second.

In this example, it is easy to point out why the default
theory have multiple answers, but when the default theory
is complex, it is not that easy anymore. So, maybe some
unwanted extensions are given but we do not know exactly
why.

In knowledge representation, some useful things can
be expressed utilizing the non-existence and/or multi-
extensions. One of the most important things is to ex-
press constraints, which can be expressed as p∧q:r∨¬r

r∧¬r . It
is claimed that p and q should not hold at the same time.
When both of p and q are present in the premise, no ex-
tensions exists (except for a trivial one if W is inconsis-
tent). Inversely, when a default theory lacks extensions, it
is likely that some constraints are violated. But, in the prac-
tice, knowing that some constraints are possibly unsatisfied
is not enough; we would like to know which constraints are
broken. Another example is multi-extensions, which is use-
ful especially in representing multi-goal problem; one exten-
sion contains some goals and the corresponding executable
planning or schedule. Sometimes, we want to know how to
modify the system to achieve more goals simultaneously. In
this situation, we need to find out which part of the premises
make the goals distributed into different extensions. Thus,
in order to enhance the performance, only that part should
be updated.
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Figure 1: The bilattice BL that has 16 truth values and its
alternative representation, where (w,w) is also referred as
>, and (d,w) is also referred as of , etc.

Bilattice and Annotated logic
In this paper, we propose an annotated logic to serve as the
underlying logic to handle inconsistency.

The family of annotated logics (Kifer & Lozinskii 1992)
is a generalization of annotated logic programs introduced
by Subrahmanian (Subrahmanian 1987). In Kifer’s anno-
tated logic, a belief semi lattice is required (see (Kifer &
Lozinskii 1992) for detail), while in this paper, we define
a bilattice as the math structure. Bilattice is presented by
Ginsberg by generaliing Belnap’s four-valued logic (Bel-
nap 1977) for unifying several existing formalisms of log-
ical reasoning in artificial intelligence (Ginsberg 1988).
Bilattice-valued logics and their preferential reasoning have
some nice properties, see (Ginsberg 1988; Arieli & Avron
1998; 2000; Fitting 2002) for details.

In Reiter’s default logic, beliefs in an extension can be
divided into four levels of uncertainty: unknown, satisfiable,
revisable, and believable. The conclusions that can not be
revised are believable; the conclusions drawn by applying
some defaults are revisable; the justifications of applicable
defaults are satisfiable, although they are not included in the
extension; and the remains are unknown. The four levels
of uncertainty are denoted as u, j, d, w respectively in this
paper, and they are ordered by u < j < d < w, which
forms a lattice. We can define a bilattice BL (Fig 1) with
16-values by:

(x1, y1) ≤t (x2, y2) iff x1 ≤ x2, y1 ≥ y2
(x1, y1) ≤k (x2, y2) iff x1 ≤ x2, y1 ≤ y2
¬(x, y) = (y, x)

where x1, x2, y1, y2, x, y are one of u, j, d, w.

In the bilattice, we use ∧ and ∨ for meet and join which
correspond to the ≤t lattice. And those correspond to the
≤k lattice are not used in this paper.

A valuation v maps each atom in L to an element in BL.
Any valuation is extended to complex formulas in the obvi-
ous way. In this paper we extend the valuation to the anno-
tated formulas. An annotated formula is of the form φ : µ,
where φ is a formula of the propositional language L and µ
is an element from the bilattice BL. In this paper, we denote

(Σ : µ) as the set {φ : µ | φ ∈ Σ}. A valuation v is a model
(φ : µ) iff v(φ) ≥k µ.

Preferential reasonings can be defined in bilattice-valued
logics to improve their reasoning power, see (Ginsberg
1988; Arieli & Avron 1998) for more details.

The elements in BL can be divided into four sub-
sets: Ft = {dt, pt, d>, of, t, ?t, ot,>}, Ff =
{df, pf, d>, ot, f, ?f, of,>}, F> = Ft ∩ Ff , and F⊥ =
BL \ (Ft ∪ Ff ).

Definition 2 A valuation v is called more classical than µ,
denoted as µ ≺ v, if µ(p) ∈ F> ∪ F⊥ whenever v(p) ∈
F> ∪ F⊥, for every atom p in L.

Definition 3 Let E be a set of annotated formulas. Then we
write E |=A

≺ φ : µ iff any most classical model of E is a
model of (φ : µ).

In this paper, we denote ThA
≺(E) = {(φ : µ) | E |=A

≺
(φ : µ)}, where E is a set of annotated formulas. It is worth
noting that if (φ : µ) ∈ ThA

≺(E) and ν ≤k µ then (φ : ν) ∈
ThA

≺(E).
Following the work in (Arieli & Avron 1998), we have

that:

Corollay 1 Let E be a set of consistent formulas and E′ be
a set of annotated formulas, s.t. φ ∈ E iff (φ : µ) ∈ E′ for
some µ ∈ {dt, t}. Then E |=cl ψ iff E′ |=A

≺ (ψ : dt), where
|=cl is the consequence relation of classical logic.

According to (Arieli & Avron 2000), it is easy to prove
that the consequent relation |=A

≺ satisfies cautious mono-
tonicity and cautious cut property.

Annotated Default Logic
The Logic
In Reiter’s default logic, a justification of a default is sat-
isfiable in a context S, which is a set of formulas, if its
negation is not derivable in S. Since the underlying logic
is paraconsistent, a formula and its negation can presented
simultaneously, the satisfiability of the justifications should
be redefined:

Definition 4 Let E be a set of annotated formulas, and let
φ be a formula. Denote E |=j φ if

• E |=A
≺ (φ : jt) and E 6|=A

≺ (φ : f), or

• E 6|=A
≺ (φ : jf)

If E does not contain any information contradict with φ,
i.e. E 6|=A

≺ (φ : jf), then φ is satisfiable in the context of
E. In another hand, E |=A

≺ (φ : jt) explicitly state that φ is
satisfiable in the context of E, and φ is not satisfiable if it is
definitely false in the context of E, i.e. E |=A

≺ (φ : f).

Definition 5 Let E be a set of annotated formulas, and let
T = (W,D) be a default theory.



Define

E0 = (W : t)

Ei+1 = ThA
≺(Ei) ∪ {(γ : dt), (β1 : jt), . . . , (βn : jt) |

α : β1, . . . , βn

γ
∈ D, (α : dt) ∈ Ei, and

E |=j β1, . . . , E |=j βn)}

E is an annotated extension of T iff E =
⋃∞

i=0Ei.

In the annotated extensions, only those formulas with an-
notation greater than dt in the partial order ≤k are consid-
ered as true. In Section , we will show that an extension in
Reiter’s default logic can be viewed as a simplification of an
annotated extension.

In Definition 5, ThA
≺(Ei) is presented in constructing

Ei+1, which means that all conclusions followed by Ei are
all added into Ei+1. Recall that a logic is cautious mono-
tonic means that added conclusions inferred by a theory into
the theory itself will not revised any conclusions, and a logic
satisfies cautious cut means that add conclusions inferred by
a theory into itself will never introduce new conclusions. So,
it is sufficient and necessary to require the underlying logic
to satisfy the cautious monotonicity and cautious cut prop-
erty.

The following example shows how the annotated default
logic works:

Example 3 Let T = ({p, p → q}, { q:r
¬p}) be a default the-

ory. T has no extensions in Reiter’s default logic, but it has
a unique annotated extension E = ThA

≺(p : ot, q : t, r : jt).

By analyzing the annotated extension E of T = (W,D),
we can obtain the inconsistent formulas by Inc(E) =
{φ | (φ : d>) ∈ E} and the contradictory defaults by
GDT

>(E) = {α:β1,...,βn

γ ∈ D | (α : dt) ∈ E, (βi :
pf) ∈ E for some 1 ≤ i ≤ n}. Therefore, the pair
(Inc(E), GDT

>(E)) can be used to characterize the degree
of plausibility of the annotated extension E of T . An an-
notated extension E1 is called more plausible than E2 iff
Inc(E1) ⊆ Inc(E2) and GDT

>(E1) ⊆ GDT
>(E2).

Existence of Annotated Extensions
The annotated default logic is non-trivial because the under-
lying annotated logic is paraconsistent. In this subsection,
we will show that the annotated default logic is coherent,
i.e. any default theory has at least one annotated extensions.

At first, any semi-normal default theories has annotated
extensions:

Theorem 2 Let T = (W,D) be any semi-normal default
theory. SQ = [d1, d2, · · · , dn]∞ is a sequence, in which
[d1, d2, · · · , dn] is a permutation of D.

Define
E0 = (W : t)

and for i ≥ 0

Ei+1 = ThA
≺(Ei) ∪ {(γ : dt), (γ ∧ β : jt) |

di =
α : β ∧ γ

γ
∈ D,where

(α : dt) ∈ Ei, Ei |=j γ ∧ β}

then E =
∞⋃

i=0

Ei is an annotated extension of T .

In the above theorem, [d1, d2, · · · , dn]∞ is the infinite se-
quence [d1, d2, . . . , dn, d1, d2, . . . , dn, . . .].

It is worth noting that a semantic equivalent transforma-
tion from default theory to semi-normal ones are provided
in (Janhunen 2003), and extensions of the semi-normal de-
fault theories can be reduced to the extensions of the original
ones. By using the same transformation and reducing oper-
ators, we can prove that1:

Corollay 2 (Existence of Annotated Extensions) For any
default theory T = (W,D), T has at least one annotated
default extensions.

Thus, inconsistencies among formulas and contradictions
involving defaults can be resolved, as shown in the following
examples:

Example 4 Consider the default theories given in Example
1, Ti has a unique annotated extension Ei, s.t.

• E1 = ThA
≺({p : jt, q : d>}), in which, we do not know

whether p is true of false, but it is likely to be true. q is
regarded as both true and false, but such inconsistent con-
clusion can be revised when new information is achieved.

• E2 = ThA
≺({p : jt, q : ot}). q is also regarded as an

inconsistence, but it can not be revised to false.
• E3 = ThA

≺({p : pf}). p is regarded as consistently false,
but such conclusion is problematic since it is regarded as
likely to be true at the same time.

• E4 = ThA
≺({p : pf, q : dt, r : jt}). The conclusion is

drawn by firs assume that p is not false and then infer that
p is false by default, so, the statement about p is problem-
atic.

Compare with Reiter’s Default logic
In the annotated extensions, conclusions (formulas) are an-
notated with different levels of uncertainties. So, we expect
that the annotated extensions provid more detailed charac-
terizations than Reiter’s default extensions do. We also ex-
pect that these extra information help the users in knowledge
representation as well as analysis of the default theories.

Definition 6 Let E be set of annotated formulas, denote
Cls(E) = {φ | (φ : µ) ∈ E,µ ≥k dt}.

1In fact, we proved that, under the transformation T rans(·), by
omitting auxiliary symbols, the annotated extensions of the default
theory T rans(T ) are annotated extensions of the default theory T .



Informally speaking, Cls(E) contains the same state-
ments as E does, since only those statements with the an-
notation greater than dt in the partial order k are regarded as
true.

Proposition 1 Let E be a set of annotated formulas. Then
Inc(E) = ∅ iff Cls(E) is consistent.

Theorem 3 (Classicalness) Suppose thatE is an annotated
extension of default theory T = (W,D). If Inc(E) = ∅ and
GDT

>(E) = ∅, then Cls(E) is an nontrivial extension of
(W,D) in Reiter’s default logic.

In another hand, by adding the information about the jus-
tifications of the defaults that generate the (Reiter’s default)
extension, we can obtain all we need in an annotated exten-
sion:

Theorem 4 If E is an extension of a default theory (W,D)
in Reiter’s default logic, thenE′ is an≤k minimal annotated
extension of (W,D), and E′ is classical consistent, where
E′ = ThA

≺((W : t) ∪ {(γ : dt), (β1 : jt), . . . , (βn : jt) |
α:β1,...,βn

γ ∈ GDT (E)}), where GDT (E) = {α:β1,...,βn

γ ∈
D | α ∈ E,¬β1 /∈ E, . . . ,¬βn /∈ E}.

Since a subset of annotated extensions are identical to ex-
tensions in Reiter’s default logic in the sense of the conclu-
sions contained by them, the annotated default logic is an
extension of Reiter’s default logic.

Knowledge Representation
In annotated default logic, conclusions are annotated with
different annotations, from which useful information can be
extracted to help us to analyze the default theories. In this
section, we will show how this can be done by some exam-
ples. We will further our work on this interesting topic in the
future.

Example 5 Let T = ({p, q}, {p,q:c1∨¬c1
c1∧¬c1

, q,r:c2∨¬c2
c2∧¬c2

}). The
two constraints in T are referenced by c1 and c2 respec-
tively. Obviously, constraint c1 is broken but c2 is not. T
has no extension in Reiter’s default logic, and thus we can
not infer why it lacks extensions. Contrarily, T has an anno-
tated extension E = ThA

≺({p : t, q : t, c1 : d>, c2 : ⊥}), in
which the annotation d> of c1 indicate that it is broken and
⊥ indicate that c2 is not, just as expected.

Some times, we need to express things which may have
more than one possible answers:

Example 6 Let T = (∅, D1 ∪ D2), where D1 =
{ :¬(processjob1∧processjob2)
¬(processjob1∧processjob2)

,
:processjob1
processjob1

,
:processjob2
processjob2

}, and
D2 = {processjob1:g1

g1
,

processjob2:g2
g2

}. The defaults in D1

make sure that exactly one of job1 and job2 be processed,
but if using classical statement processjob1 ∨ processjob2

to represent that, we can not get any extension contains
processjob1 or processjob2. T has two annotated exten-
sions: E1 = ThA

≺(processjob1 : dt, g1 : dt) and E2 =

ThA
≺(processjob2 : dt, g2 : dt). What will happen if we

want g1 and g2 achieved at the same time? T has also
another annotated extension E3 = ThA

≺(processjob1 :
d>, processjob2 : d>, g1 : dt, g2 : dt), in which both
of g1 and g2 are annotated as dt. Notice that in E3,
processjob1 and processjob2 are annotated as a inconsis-
tent label >. This fact indicate that, only after when we
change the premise to make them consistent, we can achieve
more goals. Obviously, by adding more processors we can
process more jobs simultaneously, and then get more out-
comes. It is worth noting that Inc(E3) 6= ∅ and thus is less
plausible as E1 and E2. So, We can not infer that g1 ∧ g2 if
we only consider the most plausible annotated extensions.

Even when the default theory is consistent and coherent,
our method can extract interesting information:

Example 7 Let T = (W,D) be a default theory
with W = {broken a ∨ broken b} and D =
{ :usable a∧¬broken a

usable a , :usable b∧¬broken b
usable b }. T also has a

single annotated extension: E′ = ThA
≺({(broken a ∨

broken b) : ?t, broken a : jf, broken b : jf, usable a :
dt, usable b : dt}). In this annotated extension, we can in-
fer that both a and b are usable, but we do not know precisely
which one, just as same as what we can infer in Reiter’s de-
fault logic. However, the annotation ?t means that some
justifications can not be satisfied simultaneously because of
the statement (broken a ∨ broken b), and so, the obtained
annotated extension E′ is doubtable.

Example 8 Let T = (∅, { :p
q ,

:¬p
r }). T has only one exten-

sion E = Th({q, r}), in which q ∧ r is true. But this con-
clusion is “brittle”, i.e. when any new information about
p is achieved, it will be revised. This is not a problem in
general, but sometimes the users do not want that. E has a
counterpart E′ which is an annotated extension of T , where
E′ = ThA

≺({p : j>, q : dt, r : dt}). In E′, the annotation
j> indicate that some conclusions are possibly too “brit-
tle”.

Related Works
Coherent variants of Reiter’s default logic have been pre-
sented in the past years, among them, there are constraint
default logic (Schaub 1992), and justified default logic
(Lukaszewicz 1984). Also, paraconsistent versions was pro-
posed too, such as the bi-default logic (Han 2004), the four-
valued default logic (Yue & Lin 2005; Yue, Ma, & Lin
2006).

In constraint default logic and justified default logic, by
preserving justifications of applied defaults, constraint and
justified extensions are ensured to exist for any default the-
ory. As a result, the intended meaning of the default theo-
ries are correspondingly changed as long as the conclusions
are changed. Our method is different from them in that:
1) ours aim at resolving inconsistences and contradictions
by applying multi-valued logic; 2) ours is an extension of
Reiter’s default logic, but constraint default logic and jus-
tified default logic are less expressive than Reiter’s default
logic (Delgrande & Schaub 2003).



Bi-default logic and the four-valued default logic are para-
consistent; both of them are non-trivial. Using the tech-
nique of formula transformation, inconsistences and contra-
dictions can be resolved. But some default theories lack bi-
extensions and/or k-minimal models. In contract, any de-
fault theory has at least one annotated extension, in which,
possible inconsistencies and contradictions are annotated if
there are any.

Some other semantics are also provided for default the-
ories, such as well-founded semantics (Gelder, Ross, &
Schlipf 1991). We do not compare ours with them exhaus-
tively, since the annotated default logic is an extension of
Reiter’s default logic.

Conclusions and Future Work
Our main contribution in this paper is to provide the an-
notated default logic, which is paraconsistent and coherent,
thus meaningful knowledge can be extracted even when in-
consistencies and contradictions present. When a default
theory has non-trivial extensions in Reiter’s default logic,
the same conclusions are extracted in the annotated default
logic. As a consequent, the intended meaning of the default
theories are keeping unchanged when shifting from Reiter’s
default logic to the annotated default logic.

In another hand, the extensions in Reiter’s default logic
can be viewed as simplified annotated extensions which are
classical consistent. Therefore the annotated default logic
is an extension of Reiter’s default logic. In our method,
conclusions can be distinguished according to their different
level of uncertainty. Therefore, the annotation extensions
provide a more detailed characterization, and contain more
information, which help the users in evaluating, analyzing
and modifying their knowledge representations.

In the future, we will try to implement the annotated de-
fault logic as well as consider the applications of the anno-
tated default logic in knowledge representation and reason-
ing.
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