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Abstract

Logical theories in reasoning about actions may also
evolve, and knowledge engineers need revision tools to
incorporate new incoming laws about the dynamic en-
vironment. We here fill this gap by providing an algo-
rithmic approach for action theory revision. We give
a well defined semantics that ensures minimal change,
and show correctness of our algorithms w.r.t. the seman-
tic constructions.

Introduction
Like any logical theory, action theories in reasoning about
actions may evolve, and thus need revision methods to ade-
quately accommodate new information about the behavior
of actions. In (Eiter et al. 2005; Herzig, Perrussel, and
Varzinczak 2006; Varzinczak 2008) update and contraction-
based methods for action theory repair are defined. Here we
continue this important though quite new thread of investi-
gation and develop a minimal change approach for revising
a domain description.
The motivation is as follows. Consider an agent designed

to interact with a coffee machine. Among her beliefs, the
agent may know that a coffee is a hot drink, that after buying
she gets a coffee, and that with a token it is possible to buy.
We can see the agent’s beliefs about the behavior of actions
in this scenario as a transition system (Figure 1).
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Figure 1: A transition system depicting the agent’s knowl-
edge about the dynamics of the coffee machine. b, t, c, and
h stand for, respectively, buy, token, coffee, and hot.

Well, at some stage the agent may learn that coffee is the
only hot drink available at the machine, or that even without
a token she can still buy, or that all possible executions of
buy should lead to states where ¬token is the case. These
are examples of revision with new laws about the dynamics
of the environment under consideration. And here we are
interested in exactly these kinds of theory modification.

The contributions of the present work are as follows:
• What is the semantics of revising an action theory by a
law? How to get minimal change, i.e., how to keep as
much knowledge about other laws as possible?

• How to syntactically revise an action theory so that its
result corresponds to the intended semantics?

Here we answer these questions.

Logical Preliminaries
Our base formalism is multimodal logicKn (Popkorn 1994).

Action Theories in Multimodal K
Let A = {a1, a2, . . .} be the set of atomic actions of a do-
main. To each action a there is associated a modal operator
[a]. P = {p1, p2, . . .} denotes the set of propositions, or
atoms. L = {p,¬p : p ∈ P} is the set of literals. ! denotes
a literal and |!| the atom in !.
We use ϕ, ψ, . . . to denote Boolean formulas. F is the set

of all Boolean formulas. A propositional valuation v is a
maximally consistent set of literals. We denote by v ! ϕ
the fact that v satisfies ϕ. By val(ϕ) we denote the set of
all valuations satisfying ϕ. |=

CPL
is the classical consequence

relation. Cn(ϕ) denotes all logical consequences of ϕ.
With IP(ϕ) we denote the set of prime implicants (Quine

1952) of ϕ. By π we denote a prime implicant, and atm(π)
is the set of atoms occurring in π. Given ! and π, ! ∈ π
abbreviates ‘! is a literal of π’.
We use Φ, Ψ, . . . to denote complex formulas (possibly

with modal operators). 〈a〉 is the dual operator of [a]
(〈a〉Φ =def ¬[a]¬Φ).
A Kn-model is a tuple M = 〈W,R〉 where W is a set of

valuations, and R maps action constants a to accessibility
relations Ra ⊆ W × W. Given M , |=M

w
p (p is true at world

w of modelM ) if w ! p; |=M
w

[a]Φ if |=M
w′

Φ for every w′ s.t.
(w, w′) ∈ Ra; truth conditions for the other connectives are
as usual. ByM we will denote a set of Kn-models.

M is a model of Φ (noted |=M Φ) if and only if |=M
w

Φ for all
w ∈ W. M is a model of a set of formulas Σ (noted |=M Σ)
if and only if |=M Φ for every Φ ∈ Σ. Φ is a consequence of



the global axioms Σ in all Kn-models (noted Σ |=
Kn

Φ) if and

only if for everyM , if |=M Σ, then |=M Φ.
In Kn we can state laws describing the behavior of ac-

tions. Here we distinguish three types of them.
Static Laws A static law is a formula ϕ ∈ F that char-
acterizes the possible states of the world. An example is
coffee → hot: if the agent holds a coffee, then she holds a
hot drink. The set of static laws of a domain is denoted by S .
Effect Laws An effect law for a has the form ϕ → [a]ψ,
with ϕ, ψ ∈ F. Effect laws relate an action to its effects,
which can be conditional. The consequent ψ is the effect
that always obtains when a is executed in a state where
the antecedent ϕ holds. An example is token → [buy]hot:
whenever the agent has a token, after buying, she has a hot
drink. If ψ is inconsistent we have a special kind of ef-
fect law that we call an inexecutability law. For example,
¬token → [buy]⊥ says that buy cannot be executed if the
agent has no token. The set of effect laws is denoted by E .
Executability Laws An executability law for a has the form
ϕ → 〈a〉(, with ϕ ∈ F. It stipulates the context in which
a is guaranteed to be executable. (In Kn 〈a〉( reads “a’s
execution is possible”.) For instance, token → 〈buy〉( says
that buying can be executed whenever the agent has a token.
The set of executability laws of a domain is denoted by X .
Given a, Ea (resp. Xa) will denote the set of only those

effect (resp. executability) laws about a.
Action Theories T = S ∪ E ∪X is an action theory.
To make the presentation more clear to the reader, we here

assume that the agent’s theory contains all frame axioms.
However, all we shall say here can be defined within a for-
malism with a solution to the frame and ramification prob-
lems like (Herzig, Perrussel, and Varzinczak 2006) do. The
action theory of our example will thus be:

T =

{ coffee→ hot, token→ 〈buy〉(,
¬coffee→ [buy]coffee,¬token→ [buy]⊥,
coffee→ [buy]coffee, hot→ [buy]hot

}

Figure 1 above shows a Kn-model for the theory T.
Sometimes it will be useful to consider models whose

possible worlds are all the possible states allowed by S :
Definition 1 M = 〈W,R〉 is a big frame of T if and only if:
• W = val(S); and

• Ra = {(w, w′) : ∀.ϕ → [a]ψ ∈ Ea, if |=
M

w
ϕ then |=

M

w′
ψ}

Big frames of T are not always models of T.

Definition 2 M is a supra-model of T iff |=M T and M is a
big frame of T.
Figure 2 depicts a supra-model of our example T.

Prime Valuations
An atom p is essential to ϕ if and only if p ∈ atm(ϕ′) for
all ϕ′ such that |=

CPL
ϕ ↔ ϕ′. For instance, p1 is essential to

¬p1∧(¬p1∨p2). atm!(ϕ) will denote the essential atoms of
ϕ. (If ϕ is a tautology or a contradiction, then atm!(ϕ) = ∅.)
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Figure 2: Supra-model for the coffee machine scenario.

For ϕ ∈ F, ϕ∗ is the set of all ϕ′ ∈ F such that ϕ |=
CPL

ϕ′

and atm(ϕ′) ⊆ atm!(ϕ). For instance, p1 ∨ p2 /∈ p1∗, as
p1 |=

CPL
p1 ∨ p2 but atm(p1 ∨ p2) 0⊆ atm!(p1). Clearly,

atm(
∧

ϕ∗) = atm!(
∧

ϕ∗). Moreover, whenever |=
CPL

ϕ ↔
ϕ′, then atm!(ϕ) = atm!(ϕ′) and also ϕ∗ = ϕ′∗.
Theorem 1 ((Parikh 1999)) |=

CPL
ϕ ↔

∧

ϕ∗, and
atm(ϕ∗) ⊆ atm(ϕ′) for every ϕ′ s.t. |=

CPL
ϕ ↔ ϕ′.

Thus for every ϕ ∈ F there is a unique least set of ele-
mentary atoms such that ϕ may equivalently be expressed
using only atoms from that set. Hence, Cn(ϕ) = Cn(ϕ∗).
Given a valuation v, v′ ⊆ v is a subvaluation. ForW a set

of valuations, a subvaluation v′ satisfies ϕ ∈ F modulo W
(noted v′ !W ϕ) if and only if v ! ϕ for all v ∈ W such that
v′ ⊆ v. A subvaluation v essentially satisfies ϕ modulo W
(v !

!

W
ϕ) if and only if v !W ϕ and {|!| : ! ∈ v} ⊆ atm!(ϕ).

Definition 3 Let ϕ ∈ F and W be a set of valuations. A
subvaluation v is a prime subvaluation of ϕ (modulo W) if
and only if v !

!

W
ϕ and there is no v′ ⊆ v s.t. v′ !

!

W
ϕ.

A prime subvaluation of a formula ϕ is one of the weak-
est states of truth in which ϕ is true. (Notice the similar-
ity with the syntactical notion of prime implicant (Quine
1952).) We denote all prime subvaluations of ϕ modulo W
by base(ϕ,W).
Theorem 2 Let ϕ ∈ F and W be a set of valuations. Then
for allw ∈ W,w ! ϕ if and only ifw !

∨

v∈base(ϕ,W)

∧

"∈v !.

Closeness Between Models
When revising a model, we perform a change in its struc-
ture. Because there can be several ways of modifying a
model (not all minimal), we need a notion of distance be-
tween models to identify those closest to the original one.
As we are going to see in more depth in the sequel, chang-

ing a model amounts to modifying its possible worlds or
its accessibility relation. Hence, the distance between two
Kn-models will depend upon the distance between their sets
of worlds and accessibility relations. These here will be
based on the symmetric difference between sets, defined as
X−̇Y = (X \ Y ) ∪ (Y \ X).
Definition 4 LetM = 〈W,R〉. M ′ = 〈W′,R′〉 is at least as
close toM as M ′′ = 〈W′′,R′′〉, noted M ′ 2M M ′′, iff
• either W−̇W′ ⊆ W−̇W′′

• or W−̇W′ = W−̇W′′ and R−̇R′ ⊆ R−̇R′′

This is an extension of Burger and Heidema’s rela-
tion (Burger and Heidema 2002) to our modal case. Note
that other distance notions are also possible, like e.g. the
cardinality of symmetric differences or Hamming distance.



Semantics of Revision
Contrary to contraction, where we want the negation of a law
to be satisfiable, in revision we want a new law to be valid.
Thus we must eliminate all cases satisfying its negation.
The idea in our semantics is as follows: we initially have a

set of modelsM in which a given formula Φ is (potentially)
not valid, i.e., Φ is (possibly) not true in every model inM.
In the result we want to have only models of Φ. Adding Φ-
models toM is of no help. Moreover, adding models makes
us lose laws: the resulting theory would be more liberal.
One solution amounts to deleting fromM those models

that are not Φ-models. Of course removing only some of
them does not solve the problem, we must delete every such
a model. By doing that, all resulting models will be mod-
els of Φ. (This corresponds to theory expansion, when the
resulting theory is satisfiable.) However, ifM contains no
model of Φ, we will end up with ∅. Consequence: the result-
ing theory is inconsistent. (This is the main revision prob-
lem.) In this case the solution is to substitute each modelM
in M by its nearest modifications M #

Φ that makes Φ true.
This lets us to keep as close as possible to the original mod-
els that we had.
Before defining revision of sets of models, we present

what modifications of (individual) models are.

Revising a Model by a Static Law
Suppose that our coffee deliverer agent discovers that the
only hot drink that is served on the machine is coffee. In this
case, we might want to revise her beliefs with the new static
law coffee↔ hot.
Considering the model in Figure 2, we see that ¬coffee ∧

hot is satisfiable. As we do not want this, the first step is to
remove all worlds in which ¬coffee∧hot is true. The second
step is to guarantee all the remaining worlds satisfy the new
law. This issue has been largely addressed in the literature on
belief revision and update (Gärdenfors 1988; Winslett 1988;
Katsuno and Mendelzon 1992; Herzig and Rifi 1999). Here
we can achieve that with a semantics similar to that of clas-
sical revision operators: basically one can change the set of
possible valuations, by removing or adding worlds.
In our example, removing the possible worlds {t,¬c, h}

and {¬t,¬c, h} would do the job (there is no need to add
new valuations since the new static law is satisfied in at least
one world of the original model).
The delicate point in removing worlds is that it may re-

sult in the loss of some executability laws: in the example, if
there were only one arrow leaving some world w and point-
ing to {¬t,¬c, h}, then removing the latter from the model
would make the action under concern no longer executable
in w. Here we claim that this is intuitive: if the state of the
world to which we could move is no longer possible, then
we do not have a transition to that state anymore. Hence, if
that transition was the only one we had, it is natural to lose it.
One could also ask what to do with the accessibility rela-

tion if new worlds must be added (revision case). We claim
that it is reckless to blindly add new elements to R. In-
stead, we shall postpone correction of executability laws, if
needed. This approach is debatable, but with the information
we have at hand, it is the safest way of changing static laws.

Definition 5 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #
ϕ iff

W′ = (W \ val(¬ϕ)) ∪ val(ϕ) and R′ ⊆ R.

Clearly |=M
′

ϕ for allM ′ ∈ M #
ϕ . The minimal models of

the revision ofM by ϕ are those closest toM w.r.t. 2M :
Definition 6 rev(M , ϕ) =

⋃

min{M #
ϕ ,2M}.

In the example of Figure 2, rev(M , coffee ↔ hot) is the
singleton {M ′}, withM ′ as shown in Figure 3.
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Figure 3: Revising modelM in Figure 2 with coffee↔ hot.

Revising a Model by an Effect Law
Let’s suppose now that our agent eventually discovers that
after buying coffee she does not keep her token. This means
that her theory should now be revised by the new effect law
token→ [buy]¬token. Looking at modelM in Figure 2, this
amounts to guaranteeing that token∧〈buy〉token is satisfiable
in none of its worlds. To do that, we have to look at all the
worlds satisfying this formula (if any) and
• either make token false in each of these worlds,
• or make 〈buy〉token false in all of them.
If we chose the first option, we will essentially flip the

truth value of literal token in the respective worlds, which
changes the set of valuations of the model. If we chose
the latter, we will basically remove buy-arrows leading to
token-worlds, which amounts to changing the accessibility
relation.
In our example, worlds w1 = {token, coffee, hot}, w2 =

{token,¬coffee, hot} and w3 = {token,¬coffee,¬hot} sat-
isfy the formula token ∧ 〈buy〉token. Flipping token in all of
them to ¬token would do the job, but this would also have
as consequence the introduction of a new static law: ¬token
would now be valid, i.e., the agent never has a token! Do we
want this?
We claim that changing action laws should not have as

side effect a change in the static laws. These have a spe-
cial status (Shanahan 1997), and should change only if re-
quired. Hence each world satisfying token ∧ 〈buy〉token has
to be changed so that 〈buy〉token becomes untrue in it. In
the example, we thus should remove (w1, w1), (w2, w1) and
(w3, w1) from R.
Definition 7 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ→[a]ψ iff:

• W′ = W, R′ ⊆ R, |=M
′

ϕ → [a]ψ, and
• If (w, w′) ∈ R \ R′, then |=M

w
ϕ

The minimal models resulting from revision of a model
M by a new effect law are those closest toM w.r.t.2M :
Definition 8 rev(M , ϕ → [a]ψ) =

⋃

min{M #
ϕ→[a]ψ,2M}.

TakingM as in Figure 2, rev(M , token → [buy]¬token)
will be the singleton {M ′} depicted in Figure 4.



M ′ : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

Figure 4: Revising M in Figure 2 with token →
[buy]¬token.

Revising a Model by an Executability Law
Let us now suppose that at some stage it has been decided to
grant free coffee to everybody. Faced with this information,
we have to revise the agent’s laws to reflect the fact that buy
can also be executed in ¬token-contexts: ¬token → 〈buy〉(
is a new executability law.
Considering model M in Figure 2, we observe that

¬token ∧ [buy]⊥ is satisfiable. Hence we must throw
¬token ∧ [buy]⊥ away to ensure the new law becomes true.
To remove ¬token ∧ [buy]⊥ we have to look at all worlds

satisfying it andmodifyM so that they no longer satisfy that
formula. Given worlds w4 = {¬token,¬coffee,¬hot} and
w5 = {¬token,¬coffee, hot}, we have two options: change
the interpretation of token in both or add new arrows leav-
ing these worlds. A question that arises is ‘what choice is
more drastic: change a world or an arrow’? Again, here
we claim that changing the world’s content (the valuation)
is more drastic, as the existence of such a world is foreseen
by some static law and is hence assumed to be as it is, un-
less we have enough information supporting the contrary, in
which case we explicitly change the static laws (see above).
Thus we shall add a new buy-arrow from each of w4 andw5.
Having agreed on that, the issue now is: which worlds

should the new arrows point to? In order to comply with
minimal change, the new arrows shall point to worlds that
are relevant targets of each of the¬token-worlds in question.

Definition 9 Let M = 〈W,R〉, w, w′ ∈ W, andM be a set
of models s.t. M ∈ M. Then w′ is a relevant target world
of w w.r.t. ϕ → 〈a〉( for M inM iff |=M

w
ϕ and

• If there is M ′ = 〈W′,R′〉 ∈ M such that R′
a(w) 0= ∅:

– for all ! ∈ w′ \ w, there is ψ′ ∈ F s.t. there is v′ ∈

base(ψ′,W) s.t. v′ ⊆ w′, ! ∈ v′, and |=
Mi

w
[a]ψ′ for

every Mi ∈ M
– for all ! ∈ w ∩ w′, either there is ψ′ ∈ F s.t. there is
v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′, ! ∈ v′, and |=Mi

w
[a]ψ′ for

all Mi ∈ M; or there is Mi ∈ M s.t. 0|=Mi

w
[a]¬!

• If R′
a(w) = ∅ for every M ′ = 〈W′,R′〉 ∈ M:

– for all ! ∈ w′ \ w, there is Mi = 〈Wi,Ri〉 ∈ M s.t.
there is u, v ∈ Wi s.t. (u, v) ∈ Ria and ! ∈ v \ u

– for all ! ∈ w ∩ w′, there is Mi = 〈Wi,Ri〉 ∈ M s.t.
there is u, v ∈ Wi s.t. (u, v) ∈ Ria and ! ∈ u ∩ v,
or for all Mi = 〈Wi,Ri〉 ∈ M, if (u, v) ∈ Ria, then
¬! /∈ v \ u

By rt(w, ϕ → 〈a〉(, M ,M) we denote the set of all rele-
vant target worlds of w w.r.t. ϕ → 〈a〉( for M inM.

In our example, w6 = {¬token, coffee, hot} is the only
relevant target world here: the two other ¬token-worlds
violate the effect coffee of buy, while the three token-
worlds would make us violate the frame axiom ¬token →
[buy]¬token.
Definition 10 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ→〈a〉& iff:

• W′ = W, R ⊆ R′, |=M
′

ϕ → 〈a〉(, and
• If (w, w′) ∈ R′ \ R, then w′ ∈ rt(w, ϕ → [a]⊥, M ,M)

The minimal models resulting from revising a model M
by a new executability law are those closest toM w.r.t.2M :
Definition 11 rev(M , ϕ → 〈a〉() =

⋃

min{M #
ϕ→〈a〉&,2M}.

In our running example, rev(M ,¬token → 〈buy〉() is
the singleton {M ′}, whereM ′ is as shown in Figure 5.

M ′ :
t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

b

b

b

b b

b

Figure 5: The result of revising modelM in Figure 2 by the
new executability law ¬token→ 〈buy〉(.

Revising Sets of Models
Up until now we have seen what the revision of single mod-
els means. Now we are ready for a unified definition of re-
vision of a set of modelsM by a new law Φ:
Definition 12 LetM be a set of models and Φ a law. Then

M#
Φ = (M\ {M :0|=

M
Φ}) ∪

⋃

M∈M

rev(M , Φ)

Definition 12 comprises both expansion and revision: in the
former, addition of the new law gives a satisfiable theory;
in the latter a deeper change is required to get rid of the
inconsistency.

Syntactic Operators for Revision
We now turn our attention to the syntactical counterpart of
revision. Our endeavor here is to perform minimal change
also at the syntactical level. By T#

Φ we denote the result of
revising an action theory T with a new law Φ.

Revising a Theory by a Static Law
Looking at the semantics of revision by Boolean formulas,
we see that revising an action theory by a new static law
may conflict with the executability laws: some of them may
be lost and thus have to be changed as well. The approach
here is to preserve as many executability laws as we can in
the old possible states. To do that, we look at each possi-
ble valuation that is common to the new S and the old one.
Every time an executability used to hold in that state and
no inexecutability holds there now, we make the action exe-
cutable in such a context. For those contexts not allowed by



the old S , we make a inexecutable (cf. the semantics). Algo-
rithm 1 deals with that (S ' ϕ denotes the classical revision
of S by ϕ built upon some well established method from
the literature (Winslett 1988; Katsuno and Mendelzon 1992;
Herzig and Rifi 1999)).

Algorithm 1 Revision by a Static Law
input: T, ϕ
output: T!

ϕ

S ′:= S " ϕ, E ′:= E , X ′:= ∅
for all π ∈ IP(S ′) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S ′ %|=
CPL

(π ∧ ϕA) → ⊥ then
if S %|=

CPL
(π ∧ ϕA) → ⊥ then

if T |=
Kn

(π ∧ ϕA) → 〈a〉* and S ′, E ′,X %|=
Kn

¬(π ∧
ϕA) then

Xa
′:= {(ϕi∧π∧ϕA) → 〈a〉* : ϕi → 〈a〉* ∈ Xa}

else
E ′:= E ′ ∪ {(π ∧ ϕA) → [a]⊥}

T!
ϕ:= S ′ ∪ E ′ ∪ X ′

Revising a Theory by an Effect Law
When revising a theory by a new effect law ϕ → [a]ψ, we
want to eliminate all possible executions of a leading to ¬ψ-
states. To achieve that, we look at all ϕ-contexts and every
time a transition to some ¬ψ-context is not always the case,
i.e., T 0|=

Kn
ϕ → 〈a〉¬ψ, we can safely force [a]ψ for that

context. On the other hand, if in such a context there is al-
ways an execution of a to ¬ψ, then we should strengthen the
executability laws to make room for the new effect in that
context we want to add. Algorithm 2 below does the job.

Algorithm 2 Revision by an Effect Law
input: T, ϕ → [a]ψ
output: T!

ϕ→[a]ψ
T ′:= T
for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S %|=
CPL

(π ∧ ϕA) → ⊥ then
for all π′ ∈ IP(S ∧ ¬ψ) do
if T ′ |=

Kn
(π ∧ ϕA) → 〈a〉π′ then

T ′:=
(T ′ \ X ′

a) ∪ {(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉* :
ϕi → 〈a〉* ∈ X ′

a}

T ′:= T ′ ∪ {(π ∧ ϕA) → [a]ψ}
if T ′ %|=

Kn
(π ∧ ϕA) → [a]⊥ then

T ′:= T ′∪{(ϕi∧π∧ϕA) → 〈a〉* : ϕi → 〈a〉* ∈ T}
T!

ϕ→[a]ψ:= T ′

Revising a Theory by an Executability Law
Revision of a theory by a new executability law has as conse-
quence a change in the effect laws: all those laws preventing

the execution of a shall be weakened. Moreover, to comply
with minimal change, we must ensure that in all models of
the resulting theory there will be at most one transition by a
from those worlds in which T precluded a’s execution.
Let (Eϕ,⊥

a )1, . . . , (Eϕ,⊥
a )n denote minimum subsets (w.r.t.

set inclusion) of Ea such that S , (Eϕ,⊥
a )i |=

Kn
ϕ → [a]⊥.

(According to (Herzig and Varzinczak 2007), one can en-
sure at least one such a set always exists.) Let E−

a =
⋃

1≤i≤n(Eϕ,⊥
a )i. The effect laws in E−

a will serve as guide-
lines to get rid of [a]⊥ in each ϕ-world allowed by T: they
are the laws to be weakened to allow for 〈a〉( in ϕ-contexts.
Our algorithm works as follows. To force ϕ → 〈a〉( to

be true in all models of the resulting theory, we visit ev-
ery possible ϕ-context allowed by it and make the follow-
ing operations to ensure 〈a〉( is the case for that context:
Given a ϕ-context, if T does not always preclude a from
being executed in it, we can safely force 〈a〉( without mod-
ifying other laws. On the other hand, if a is always inexe-
cutable in that context, then we should weaken the laws in
E−
a . The first thing we must do is to preserve all old ef-
fects in all other ϕ-worlds. To achieve that we specialize the
above laws to each possible valuation (maximal conjunction
of literals) satisfying ϕ but the actual one. Then, in the cur-
rent ϕ-valuation, we must ensure that action a may have any
effect, i.e., from this ϕ-world we can reach any other pos-
sible world. We achieve that by weakening the consequent
of the laws in E−

a to the exclusive disjunction of all possi-
ble contexts in T. Finally, to get minimal change, we must
ensure that all literals in this ϕ-valuation that are not forced
to change are preserved. We do this by stating a conditional
frame axiom of the form (ϕk ∧ !) → [a]!, where ϕk is the
above-mentionedϕ-valuation.
Algorithm 3 gives the pseudo-code for that.

Correctness of the Algorithms
Suppose we have two atoms p1 and p2, and one action a.
Let T1 = {¬p2, p1 → [a]p2, 〈a〉(}. The only model of T1

is M in Figure 6. Revising such a model by p1 ∨ p2 gives
us the modelsM ′

i , 1 ≤ i ≤ 3, in Figure 6. Now, revising T1

by p1 ∨ p2 will give us T1
#
p1∨p2 = {p1 ∧ ¬p2, p1 → [a]p2}.

The only model of T1
#
p1∨p2 is M ′

1 in Figure 6. This means
that the semantic revision may producemodels (viz.M ′

2 and
M ′

3 in Figure 6) that are not models of the revised theories.

M : ¬p1,¬p2

a

M ′
1 : p1,¬p2

M ′
2 : ¬p1, p2 M ′

3 : p1, p2

Figure 6: ModelM of T1 and revision ofM by p1 ∨ p2.

The other way round the algorithms may give theories
whose models do not result from revision of models of the
initial theory: let T2 = {(p1 ∨ p2) → [a]⊥, 〈a〉(}. Its only
model isM (Figure 6). RevisingM by p1 ∨ p2 is as above.
However T2

#
p1∨p2 = {p1 ∨ p2, (p1 ∨ p2) → [a]⊥} has a

model M ′′ = 〈{{p1, p2}, {p1,¬p2}, {¬p1, p2}}, ∅〉 that is
not inM #

p1∨p2 .



Algorithm 3 Revision by an executability law
input: T, ϕ → 〈a〉*
output: T!

ϕ→〈a〉%
T ′:= T
for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S %|=
CPL

(π ∧ ϕA) → ⊥ then
if T ′ |=

Kn
(π ∧ ϕA) → [a]⊥ then

T ′:=

(T ′ \ E ′−
a ) ∪ {(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi :

ϕi → [a]ψi ∈ E ′−
a } ∪

{(ϕi ∧ π ∧ ϕA) → [a]
L

π′∈IP(S )

A′⊆atm(π′)

(π′ ∧ ϕA′) :

ϕi → [a]ψi ∈ E ′−
a }

for all L ⊆ L do
if S |=

CPL
(π ∧ ϕA) →

V

$∈L % then
for all % ∈ L do
if T |=

Kn
% → [a]⊥ or (T %,

Kn
% → [a]¬% and

T |=
Kn

% → [a]%) then
T ′:= T ′ ∪ {(π ∧ ϕA ∧ %) → [a]%}

T ′:= T ′ ∪ {(π ∧ ϕA) → 〈a〉*}
T!

ϕ→〈a〉%:= T ′

All this happens because the possible states are not com-
pletely characterized by the static laws. Fortunately, concen-
trating on supra-models of T, we get the right result.

Theorem 3 If M = {M : M is a supra-model of T} and
there isM ′ ∈ M s.t. |=M

′

Φ, then
⋃

M∈M rev(M , Φ) ⊆ M.

Then, revision of models of T by a law Φ in the semantics
produces models of the output of the algorithms T#

Φ:

Theorem 4 IfM = {M : M is a supra-model of T} 0= ∅,
then for every M ′ ∈ M#

Φ, |=
M

′

T#
Φ.

Also, models of T#
Φ result from revision of models of T byΦ:

Theorem 5 IfM = {M : M is a supra-model of T} 0= ∅,
then for every M ′, if |=M

′

T#
Φ, thenM ′ ∈ M#

Φ.

Sticking to supra-models of T is not a big deal. We can use
the algorithms in (Herzig and Varzinczak 2007) to ensure T
is characterized by its supra-models and thatM 0= ∅.

Conclusion and Perspectives
The problem of action theory change has only recently
received attention in the literature, both in action lan-
guages (Baral and Lobo 1997; Eiter et al. 2005) and
in modal logic (Herzig, Perrussel, and Varzinczak 2006;
Varzinczak 2008).
Here we have studied what revising action theories by a

law means, both in the semantics and at the syntactical (al-
gorithmic) level. We have defined a semantics based on dis-
tances between models that also captures minimal change
w.r.t. the preservation of effects of actions. With our algo-
rithms and the correctness results we have established the

link between the semantics and the syntax for theories with
supra-models. (Due to page limits, proofs are omitted here.)
Our next step on the subject is analyze the behavior

of our operators w.r.t. AGM-like postulates (Alchourrón,
Gärdenfors, and Makinson 1985) for modal theories and
the relationship between our revision method and contrac-
tion. What is known is that Levi identity (Levi 1977),
T#

Φ = T−
¬Φ∪{Φ}, in general does not hold for action laws Φ.

The reason is that up to now there is no contraction operator
for ¬Φ where Φ is an action law. Indeed this is the general
contraction problem for action theories: contraction of a the-
ory T by a general formula (like ¬Φ above) is still an open
problem in the area. The definition of a general method will
certainly mostly benefit from the semantic modifications we
studied here (addition/removal of arrows and worlds).
Given the relationship between modal logics and descrip-

tion logics, a revision method for DL TBoxes would also
benefit from the constructions we defined here.
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