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Abstract

This work proposes a new methodology for estab-
lishing the tractability of a reasoning service that
deals with expressive first-order knowledge bases.
It consists of defining a logic that is weaker than
classical logic and that has two properties: first, the
entailment problem can be reduced to the model
checking problem for a small number of character-
istic models; and second, the model checking prob-
lem itself is tractable for formulas with a bounded
number of variables. We show this methodology
in action for the reasoning service previously pro-
posed by Liu, Lakemeyer and Levesque for deal-
ing with disjunctive information. They show that
their reasoning is tractable in the propositional case
and decidable in the first-order case. Here we ap-
ply the methodology and prove that the reasoning
is tractable in the first-order case provided that the
knowledge base and the query both use a bounded
number of variables.

Introduction

resentation languages that are not overly restricted and for
entailment relations that are not overly weak.

This line of research is initiated by Levesqli®©9g. He
proposes a generalization of a database callptbper KB
which allows a limited form of incomplete knowledge. Since
the deduction problem for proper KBs remains undecidable,
he defines a reasoning procedifethat is logically sound
and sometimes complete. Liu and LevestR@0d show that
despite the incomplete knowleddé can be implemented ef-
ficiently using database techniques.

However, the expressiveness of proper KBs is still quite
limited: knowledge may be incomplete, but no disjunctive
information is allowed. So Lakemeyer and Leves{2@02
propose an extension to a proper KB callegrapert KB,
which allows simple forms of disjunctive information. They
also propose a reasoning procedure for progéBs that is
logically sound and agrees with on proper KBs. However,
the general logical and computational properties of this new
reasoning scheme are left unanalyzed.

A popular way of specifying a limited reasoning service is
through a logic of belief. Instead of proposing a new entail-
ment relation, the idea is to model reasoninpelef implica-
tion, that is, validity of formulas of the forfiBKB > B¢),
where B is a belief operator. With the goal of specifying

In the area of Knowledge Representation and Reasonin@ reasoning service for first-order KBs with disjunctive in-
there is a well-known tradeoff between the expressiveness dérmation, Liu, Lakemeyer and Levesq{@004 propose a

the representation language and the computational tractabilegic of limited belief called the subjective logRC. Reason-

ity of the associated reasoning task. On the one hand, it i§1g based orSL is logically sound and sometimes complete.
well accepted that a general-purpose representation langualyreover, they show tha$L-based reasoning with proper
needs at least the expressiveness of first-order logic; on tH€Bs is tractable in the propositional case and decidable in the
other, the logical entailment problem of first-order logic is un-first-order case. The main idea behind these results is that
decidable. Over the past decades, two main techniques hay&-based reasoning with propeiBs reduces to a certain
been proposed to deal with this computational intractabilitymodel checking problem.

problem. The first isanguage restrictionas represented, for In this paper, we continue this line of research and show
example, by description logics; the idea is to restrict the exthatS£-based reasoning with propekBs is not only decid-
pressiveness of the representation language, and especiadlgle but alsdractablein the first-order case if both the KB
the types of incomplete knowledge that can be representednd the query use a bounded number of variables. This re-
The second idimited reasoning as represented, for exam- sultis inspired by the graph-based approach to tractability via
ple, by the work on tautological entailmdhtevesque, 1984; the concept of bounded treewidth. For example, in general,
Frisch, 1987; Schaerf and Cadoli, 1995; Patel-Schneidethe constraint satisfaction problem (CSP) is NP-complete.
1990; Lakemeyer, 1994the idea is to weaken the entailment However, researchers have shown that CSP with bounded-
relation in some way by introducing non-traditional seman-treewidth constraint graphs is in PTIME. Kolaitis and Vardi
tics. An emerging direction of research is to combine thes¢200d give a logical characterization for bounded treewidth
two approaches so as to obtain tractable reasoning for repia bounded-variable first-order logic, and hence show that



this well-known result about CSP can be explained in terms of Interestingly, their result also explains a well-known
the tractability of the model checking problem for bounded-tractability result about CSP. In general, CSP is NP-complete.
variable first-order logic. In this paper, we show that theBut Dechter and PeaflL989 and Freudef199d show that
model checking problem &. is tractable for formulas with  CSP with bounded-treewidth constraint graphs is in PTIME.
a bounded number of variables. Combining this result withKolaitis and Vardi are able to confirm this property by show-
the aforementioned result that reduces reasoning to modelg that bounded-treewidth CSP reduces to database query
checking, we obtain the main result of this paper. evaluation for FQ.

2 Bounded-Variable First-Order Logic 3 The Subjective LogicSL

The main result of this paper is inspired by the tractabilityWe begin with the motivation faSL. As observed by Lake-

of database query evaluation for first-order formulas with ameyer and LevesquE2004, although disjunctions can be

bounded number of variables. In this section, we briefly reused in many ways in a common-sense KB, it has two major

view this result, and discuss its significance. applications: (1) to represeniles such as in Horn clauses,
The complexity of query evaluation has been one of thevhere the associated reasoning is unit propagation; and (2) to

main pursuits of database theory. Vafi984 proposes two represenincomplete knowledgebout individuals, where the

complexity measures for this: combined complexity and dat@ssociated reasoning is case analysis. They argue that requir-

complexity. Combined complexity is measured in terms ofing a reasoning service to automatically deal with (2) with no

the combined size of the database and the query. Data corfrther guidance is asking too much, since this implies the

plexity is measured solely in terms of the size of the databasability to solve combinatorial puzzles. Motivated by this ob-

and the size of the query is treated as a constant. Vardi stugervation, Liuet al. [2004 propose reasoning based &4,

ies a number of logical languages and shows that combined@hich supports full unit propagation for (1), but only a con-

complexity is usually one exponential higher than data comtrolled form of case analysis for (2). In particular, they intro-

plexity. For example, the combined complexity of first-order duce a family of belief operatoy, Bi, B, ..., whereB,

logic is PSPACE-complete, while its data complexity is in essentially supports case analysis of depth boundéd by

PTIME. Later Vardi[1999 shows that the exponential gap

between combined and data complexity can be eliminated-> The syntax

by restricting the queries to have a bounded number of variThe languageC is a standard first-order logic with equality.

ables. In particular, Vardi proves that the combined complexThe languageSL is a first-order logic with equality whose

ity of bounded-variable first-order logic is in PTIME. The ba- atomic formulas are belief atoms of the forB).¢ where¢

sic idea of the proof is to view subformulas of the queries ads a formula of£ and By, is a modal operator for any > 0.

subqueries. The evaluation is bottom-up and all intermediat. ¢ is read as ¢ is a belief at levek”.

results are bounded-arity relations. More precisely, we have the following inductive defini-
We let FG denote the set of all first-order formulas with tions. There are countably infinite sets of variables and con-

at most; distinct variables. The expressiveness of/Ai®  stant symbols, which make up thermsof the language.

not as limited as it may initially appear because we can reuséhe constants behave like standard names, and no other func-

variables. For example, given a binary relatiBnstanding  tion symbols are allowed. Thetomsare expressions of the

for an edge in a graph, for arty the property “there is a path form P(t1,...,t,) whereP is a predicate symbol (exclud-

of lengthk from a” (herea is a constant) is definable by an ing equality) and the; are terms. Theliterals are atoms or

FO?-formula, as shown by the following. We defing(u) by  their negations. We useto range over literals, and we uge

induction: to denote the complement pf
bo(u) = true; The languag€ is the least set of expressions such that
¢2ir1(u) = Fz[R(u, x) A doi(z)], fori > 0; 1. if pis an atom, thep € £;
P2ir2(u) = Fy[R(u,y) A ¢2i1(y)], fori = 0. 2. if t andt’ are terms, theft = ¢) € £;
Then for anyk, ¢, (a) € FO?, and states that thereis apath 3 jf 6,4 € £ andz is a variable, thema, (¢ V ¢), and
of length% from a. In contrast, the property “there is a clique Jwé € L.

of sizek” can only be expressed in FO . . . . -
It turns out that F® provides a logical characterization Clauseswhich play an important role in the semantic defini-

for the combinatorial notion of bounded treewidth. It is fion of SC, are inductively defined as follows:

well-known that many algorithmic problems that are “hard” 1. aliteral is a clause, and is called a unit clause;

on arbitrary graphs become “easy” on trees. The concepty it . andc’ are clauses, thefe V ¢') is a clause.

of bounded treewidth generalizes the concept of tree while . e ) . . .

maintaining its good computational properties. Intuitively A clause is identified with the set of literals it contains. For

the treewidth of a graph measures its similarity with a treéponvenience, a unit clause is identified with the corresponding

This notion can be extended to the treewidth of a relationalitéral. Only non-empty clauses appeardn However, the

structure. Kolaitis and VardR00d show that if a finite struc-  ©MPY clause, denoted by, is used inSL.

ture has treewidth less thgrthen a certain canonicalformula  tynjike the other predicate symbols, equality is taken to have a

for the structure is definable by an F@rmula that can be fixed interpretation (the identity relation) and so behaves more like

constructed in polynomial time. a logical symbol.



The languageL is the least set of expressions such that

1. if¢p € LorgisO, andk > 0, thenBy¢ € SL, and is
called abelief atomof level k;

2. if t andt’ are terms o, then(t = t') € SL;

3. ifa, 8 € SC andx is a variable, thema, (a V 3), and
dra € SC.

As usual,(a A 8), (& D ), andVza are used as abbrevia-
tions; andn? is used to denote with all free occurrences of
x replaced with constamt

4. s |= Jxa iff for some constant, s = oF;
5. s = By¢ iff one of the following holds:

(a) subsumek = 0, ¢ is a clause:, andc € VP(s);
(b) reduce ¢ is not a clause and = (By¢) |;
(c) split: £ > 0 and there is some € s such that for
allp ec, sU{p} E Br_1¢.
As usual, a sentence € SC is valid, written = «, if for
every setup, we have that = a.

As can be seen from the rules of interpretation above, nega-
tion and disjunction have their usual meaningdf. The
rules for equality and quantification are justified by the fact
that the constants are taken to satisfy the unique name as-
sumption and an infinitary version of domain closure. So all

3.2 Belief reductions
Before presenting the semantics&f, we introduce some

preparatory concepts. the novelty inSL is due to the interpretation of th8, opera-

When deciding if a sentenggis believed, sometimes it is B ; R R
necessary to decide if related subformulas are believed. Tb}(g:sb ;ﬂ;lyfr']\éeg’stri;ﬂgg gtrtlaeelc;sl,zthree differentjustifications

notation(By¢) | is used to denote this belief reduction. For 1. ¢is a clausek — 0, and after doing unit propagation on
an L, theSL formula (B, is defined as follows: . e = ;
yo € (Bio) our explicit beliefs, we end up with a subclauseof

1. (Bke)l = Byc, wherecis a clause; 2. we already have appropriate beliefs about the subformu-
- (Br(t = = {t=t) as of ¢, for example, believing both conjuncts of a con-
(Be(t=1') ] = (t=1t) las of¢, f le, believing both conj f
C(Be(t=t))] = ~(t=t); junction, or some instance of an existential,
(By——¢) | = Bio; 3. there is a clause in our explicit beliefs that if we split,
' ’ ' that is, if we augment our beliefs by a literal in that
- (Br(o V)|l = (BroV Biy), clause, then in all cases we end up believingt level
whereg or 1) is not a clause; E—1.
6. (Bi(¢ V)| = (Bx—¢ A By=); All three of these deal with disjunction but in quite different
7. (By3z¢) | = 3uByd; ways, which we now illustrate with an example.
8. (Bk—al‘(b)l = vak—\(b.

Example 1 We assume three predicate¥x) saying that
is a studentG(z) saying that: is a graduate student, ahd:)
As mentioned earlieSC supports unit propagation, which saying thatz is Irish. We use constantto stand for Ann and
involves applying unit resolution to clauses until no newy for Bob. LetY be the set of sentences
clauses are generated. Lstbe a set of ground clauses. The

a b~ W N

notationUP(s) is used to denote the closure otinder unit

propagation, that is, the least sésatisfying:

l.sCs';and 2. ifp € s’ and{p} Uc € ¢, thenc € ¢'.

The notatiorVP(s) is used to denote the following set:

{c| cis a ground clause and thererise UP(s) s.t.¢’ C c}.
Finally, there is a complexity measufle || which maps

{G(a), S(b),1(a) v 1(b), Va(G(z) > S(x))},
and lets be the setup defined as the set of instances. of
{G(a), S(b),I(a) V 1(b), ~G(a) V Sa), "G(b) V S(b), .. .}.
Let ¢ be3z(I(z) A S(z)). We now show that = B; ¢.
Clearly, s U {lI(a)} E Bol(a) by subsumption. Also,
s UA{l(a)} E BySa) by subsumption, sinc&a) can be

formulas into natural numbers. It has the following property:obtained fromG(a) and—G(a) vV S(a) by unit propagation.

for any ¢, || Br¢ || <|| Br+1¢ ||; and for any¢ that is not
aclause|| (By¢) ||| < || Br¢ ||. We omit its definition here,

Thuss U {I(a)} | Bo(l(a) A Sa)) by reduction, and hence
sU{l(a)} = Bo¢ by reduction. Similarlysu{l(b)} = Bo¢.

but mention that the above property ensures that the following huss = Bi¢ by splitting on the clausga) Vv 1(b).

semantics is well-defined. ) )
4 SL-based Reasoning with Proper KBs

3.3 The semantics SC is intended to serve as a foundation for a semantically co-
Sentences ofL are interpreted via aetup which is a set  herent and computationally attractive reasoning service. The
of non-emptyground clausgsand which specifies what sen- idea is to model the reasoning service as belief implication,
tences ofL are believed, and consequently what sentencethat is, validity of formulas of the forni By~ > By¢),
of SC are true. Intuitively, a setup represents what is explicwhere Y is a KB, and¢ is a query. We writeX = ¢ if
itly believed as a possibly infinite set of ground clauses. The B> > By.¢) is valid. TheSL-based reasoning problem
semantics below then specifies what are the implicit beliefs. (for a fixed valuek) is as follows: given a KBE in £ and a
Let s be a setup. For any sentenees SC, s = « (read ‘s formula¢ in £, decide whether or ncE =, ¢. SC-based
satisfiesn”) is defined inductively orj|«|| as follows: reasoning is always classically sound:3f |=;, ¢, thenX
1. s = (d = ) iff d andd’ are the same constant; classically entails) [Liu et al,, _2004. The converse, logical
. ] completeness, does not hold in general. Moreover, in general,
2. s Foalff sifao; 1 is not decidable. To see whetg, becomes decidable, we
3.sEaVviiff sEaorsEpg; first define propef KBs.



4.1 Propert KBs
It is easy to show that if a KB is a simple database, t5&n

Second,SL-based reasoning is “eventually complete” for a
propositional proper KB X and a propositional query in

based reasoning coincides with classical logical entailment”: if ¥ classically entailsp, then there is & such that
and is also decidable. However, a database does not allow ary =+ ¢- As to the computational property, Lt al. show

form of incomplete knowledge. Levesqli999 proposes a
generalization of a database callegpraper KB equivalent

that for propet KBs, S£-based reasoning reduces to a model
checking problem (for a possibly infinite model):

to a (possibly infinite) consistent set of ground literals. ButTheorem 1 (Liu et al, 2004) LetX be proper.
while a proper KB allows atomic formulas to be unknown, Theny® =k ¢ iff gnd(2) = Bro.

it does not allow any form of disjunctive information. For
example, in a proper KB, we cannot express “Ann or Bob
is Irish” or “Every graduate student is a student” as in the

example above. So Lakemeyer and Leved@0©3 propose
an extension to a proper KB called a prop&B, equivalent

to a possibly infinite set of ground clauses. We now defin

these notions formally.

We usee to range oveewffs that is, quantifier-free for-
mulas whose only predicate is equality. We Wgeto denote
the universal closure af. We usef to range over substitu-
tions of all variables by constants, and writé as the result
of applying the substitutiofi to ¢.

Definition 1 Lete be an ewff and: a clause. Then a formula
of the formV(e D ¢) is called av-clause A KB X is proper"

if it is a finite non-empty set of-clauses. Given a proper
KB X, gndX) is defined aqcf | V(e D ¢) € ¥ andf= ef}.
A KB X is properif it is proper™ andgndY) is a consistent
set of ground literals.

Note thatgndX) is anSL setup, as in the example above.
Despite the limitations, propér KBs are expressive

Using this theorem, they show th&f-based reasoning with
proper” KBs is tractable in the propositional case and decid-
able in the first-order case.

o A Tractability Result

In this section, we show thaS(-based reasoning with
proper” KBs is not only decidable but also tractable in the
first-order case provided that both the KB and the query use
a bounded number of variables.

The main ideas behind this result are as follows. First,
by Theorem 1, it suffices to prove that deciding whether
gndX) = By¢is tractable when botR andg use a bounded
number of variables. AlthoughndX) may well be infinite,
as shown irffLiu et al, 2004, it suffices to consider the re-
striction ofgnd(X) to a finite set of constants, which consists
of the constants in eithel or ¢, and a few extra ones. More-
over, the fact thabl uses a bounded number of variables en-
sures that this restriction has a polynomial size. Second, as in
the case of database query evaluation, instead of answering
a Boolean query, we compute the set of substituiguch

enough for many real-world applications. To get a feel forthatgndX) = By¢f wheres is a formula which may have

this, consider the following example frokhiu et al., 2004.

Example 2 Let X be the following KB with a single predi-
cateC(p1, p2) saying that the two persons are compatible:

1. VaVy.C(z,y) D C(y, x);

2. Vz.C(z,ann) v C(z, bob);

3. =C(bob fred);

4. C(carl,eve Vv C(carl, fred);

5. Vz.x # bobA z # carl D C(dan z);

6. -C(eve ann) v —C(eve fred).

Then we have the following:

1. ¥ ¢ C(fred, ann);

2. ¥ 1 Va3yC(z,y);

3. ¥ 1 Jady3z[C(x, y) A C(x, z) A =C(y, 2)];
]

4. ¥ o JxTy[z # y A C(x, carl) A C(y, carl)], but
Y Fe1 JxTy[x # y A C(z, carl) A C(y, carl)].

By Theorem 1 belowy =, ¢ iff gndX) = Bi¢. Thus
the above can be proved by showing that(>) = B¢ (or

gndX) % By.¢).
4.2 Properties ofSL-based reasoning

free variables. Although this set may well be infinite, it has
a finite representation, which is what we actually compute.
As in the tractability result ofVardi, 1994, we view subfor-
mulas of¢ as subqueries, and the fact thiatises a bounded
number of variables ensures that all intermediate results are
bounded-arity database relations.

In the following, we useC’ to denote the set of formulas
from £ whose variables are frol¥ = {x1,...,z;}, where
j > 1. We used to range over substitutions of all variables
z1,...,x; by constants. We usk to range over finite sets of
constants. We ugec D to mean tha® only takes constants
from D. We letgnd2)| D denote the restriction @ndX) to
D, that is, the set of clauses frogmd(X) that only mention
constants fronD. LetI" be a set of formulas. We ugé(T") to
denote the set of constants appearing,iand we usé{," (")
to denote the union of the constants appearing iandm
extra ones.

5.1 Answers to open queries

Definition 2 Let X C £’ be propet, ¢ € £7, andk > 0.
We definedns(X, ¢. k) as the sefd | gndX) = Bi¢b}.
However,Ans(X, ¢, k) may well be infinite. Fortunately, we

can find a finite representation for it. We léhs(X, ¢, k)| D
denote the restriction afins(3, ¢, k) to D, that is, the set

As noted aboveSL-based reasoning is classically sound but{‘g € D | gnd) = Brgf}.

incomplete. However, Liet al. present the following two

Proposition 2 LetD be H;} (XU{¢}) forsomen > j. Then

results. FirstSL-based reasoning is classically complete for Ans(X, ¢, k)| D is a finite representation fodns(X, ¢, k) in

proper KBs and queries in a certain normal form cal\éd.

the following sense:



For any substitutiord, 6 € Ans(X, ¢, k) iff 8/ € 5. E(E, -, k,D)=E(3,¢,k, D).

Ans(X, ¢, k)| D, wheref’ is like § except that for 6. If ¢is (¢ V 1), but not a clause, thefi(%, ¢, k, D
all z; i =1,...,j5)s.t.6(x;) € D, ¢ maps them _ S(Z(, ® k@)) U E(S, ¢, k, D) U E(é,;;,l;,b).)

into unique representatives from— H (3 U {¢}). 7. B(Sm (6 ). kD)= E(S—tb. kD) E(S.—n. k.D)

Example 3 Let X be the following simple KB: 8. E(S 300 kD)= S(S. Juts oD (% kD
. ’ shv, = y sy Uy s Yok, .
{VaVy.C(z,y) D C(y,xz), Vz.x #annD C(x,bob)}. i )=5(%, 32y JUme(B(E ¢ )
9. E(Ev ﬁﬂﬂ/}a ka D) =0y (E(Ev _‘wa ka D))

Let ¢ be C(z,y). ThenAns(3,$,0) = {(c,bob) | ¢ # : .
ann} U {(boh ¢) | ¢ # ann}, which is an infinite set. Now We now illustrate Cases 1-4 with an example.
let D = {annbohcarl,dan}. Then Ans(X,$,0,D) = Example 5 Let X be the following KB:
{(bob bob), (carl, bob), (dan bob), (boh carl), (bob dan)},
and it makes a finite representation féns(=, ¢,0). First, 1 v¢-Clz,ann) v C(z, bob), ~C(carl, bob),
consider(bob, eve. Sinceeve ¢ D, we choosecarl as its C(dan ann) > C(dan carl), C(dan bob) > C(dan carl)}.
representative; sinc¢bobcarl) € Ans(%,¢,0,D), we
know (boh eve € Ans(Z, ¢,0). Now consider(evefred). ~ L€tD = {annbohcarl, dan eve. Then

Since neitheevenor fred is in D, we choosecarl anddan 1. E(E,(x=1y),0,D)={(c,c) | c € D}.

as their representatives; sin@rl, dan) ¢ Ans(%, ¢,0, D), o _

we know(eve fred) & Ans(S, , 0). 2. E(¥,~(zx=ann),0,D)={(c,d)|c,de D, andc#ann;.
3. E(3,C(z,y),0,D)={(carl,ann}. We get(carl, ann)

5.2 The algorithm becaus€(carl, ann) can be obtained fromgnd %) | D by

We first define two operations to be used in the algorithm. unit propagation.
By an X-relation over domainD, we mean a subset of 4, E(%,C(z,y),1, D) = {(carl,ann), (dan carl)}.

{6 | & € D}. We usef(z/d) to denote the substitution We get(dan carl) because it appears in
which is the same asexcept that: is assigned!. both E(X U {C(dan ann)}, C(z, y),0, D)
Definition 3 Let R be anX -relation over domairD, and let andE(X U {C(dan bob)}, C(z,y), 0, D).

x € X. Thedivisionof R wrt x, written ¢, (R), is the set
{6 € D|Vd e D,0(z/d) € R}. Theprojectionof R wrt z, 5.3 Correctness proof

written,.(R), isthe se{f € D | 3d € D,6(z/d) € R}. The following theorem states thatf# contains all the con-
stants inX U {¢} and at leas}i(k + 2) extra ones, then the
é'above procedure computdss(X, ¢, k)| D, which is a finite
fepresentation foAns(X, ¢, k) by Proposition 2.

Note that our definition of projection (or division) is some-
what different from that in the database literature: ours is th
Cartesian product of theirs and the domain. We use this defi
nition so as to simplify the presentation of the procedure beTheorem 3 Let> C £7 be proper, ¢ € £7, andk > 0.

low, where every intermediate relation is Anrelation. Let D be H} (X U {¢}) for somem > j(k + 2). Then
Example 4 Let X = {x,y}, D = {a,b,c}, and E(3%, 6.k, D) = Ans(%, ¢, k)| D.

R = {(a,a), (b, a),(c,a),(a,b)}. Then The proof is by induction os. Cases 1, 2, 5, 7, and 9 use the
6z(R) = {(a,a), (b,a),(c,a)}, and following properties of beliefs frorfLiu et al, 2004:

7T:F(R) = {(aa a)? (ba a)? (Ca a)? (aa b)? (ba b)? (Ca b)}

Given a propet KB ¥ C £/, a querygy € £7, a natural [= Bie = e, wherec is an ewff

numberk, and a finite set of constanis, the procedure? = Br—¢ = Bio
returns anX -relation over domai as follows: E Bi(¢p A1) = Bro A By
1. EX,(t=1),k D) ={0 € D |tbisidentical tot'6}. E ByVz¢ = VaByo

Heret andt’ are variables or constants.

The other cases use the following lemmas, which justify our

2. E(X,~(t=t"),k, D)={6 € D| t0is distinct fromt'0}.  reatment of subsumption, quantification, and splitting, re-
3. If pisaclause anét = 0, thenE(3, ¢, k, D) = spectively. We letv(X) denote the maximum number of vari-
{6 € D | there isc € UP(gndX)|D) s.t.c C ¢f}. ables in av/-clause ofX.
tThIISdIS a sukésumfptptlj ort)r:aratmn,fa?g we WI"89lIJV(T ade-) emma 4 Let D be Hf(5) for somem > w(X). Suppose
al e. proceduretoritin the proot ot Lemma o DEIOW. ¢ . UP(gndX)). Thend € UP(gndX)|D), wherec is
4. If ¢ is aclause ané > 0, thenE (X, ¢, k, D) = like c except that constants not i are replaced with unique
S(%, ¢, k, D), which we use as an abbreviation for representatives fromw — H(X).
U ﬂ E(XU{p}, ¢,k —1,D). Lemma 5 Let ¢ be a formula with a single free variable
c€qndS)|D pEC Letb andd be two constants that do not appear3hor ¢.

Here S represents a splitting operation, that is, wedet Thengnd®) = Biof iff ond(®) = Biog.

range over clauses gndX)| D and take the union ofthe Lemma 6 Let D be H. (X U {¢}) for somem > w(X).
following: the intersection of2(S U {p}, ¢,k — 1,D)  Suppose that gridl) = B¢ by splitting onc € gnd(X).
wherep ranges over literals in. Then gndX) = By¢ by splitting on some’ € gnd(X)|D.



5.4 Complexity analysis But we expect small values of these parameters to suffice ex-

We begin with two lemmas about the complexity of databas€€Pt when the KB encodes a combinatorial puzzle or some
operations and subsumption operations. We ldenote the ~ Other “mathematically interesting” problem. In this sense,

number of variables. $£ provides a computationally via_b!e rez_:tso_ning seryice for
_ ) first-order knowledge bases with disjunctive information.
Lemma 7 Each database operation used in procediirgse- We believe that the contribution of this paper lies not only
lection, intersection, union, division and projection) can bej, the technical result but also in the methodology. The con-
done inO(n’) time, wheren is the size oD. cept of bounded treewidth has proven valuable for obtain-

Proof: Each relation is of siz&(n’), and is always keptin ing many tractability results. Kolaitis and Vardi are able to
sorted form. Each operation can be done in one pass of trexplain this in terms of the tractability of the model check-
input relations, and the result remains sorted. m ing problem for bounded-variable first-order logic. What we
have done here is to show how this idea could be applied to

Lemma 8 Let ¢ be a clause. LeD be of sizeO(n), where  a radically different form of model checking, that is, when

n is the size of2. ThenFE (X, ¢,0, D) can be computed in the models are the setups of the belief logix In the fu-
O(n’*1) time. ture, we would like to take this idea even further, and find
tractable reasoning services for more expressive representa-

Proof: The following procedure computés(x, ¢, 0, D): tion languages, for example, for knowledge bases that include

1. ComputggndX)|D. unknown individuals.

2. Perform unit propagation ovgnd’X)|D. Let U, be the
set of minimum clauses efP(gndX)|D). References

3. For each: € Uy, check whether it can be unified with a [Dechter and Pearl, 1989R. Dechter and J. Pearl. Tree clustering
subset ofp; if so, mark thos& € D such thai: C ¢6. for constraint networksaArtificial Intelligence 38(3):353-366.
Return the set of those markéd [ | [Freuder, 199D E. C. Freuder. Complexity of{-tree structured
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J(k+2) i 14
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