
Tractable Reasoning in First-Order Knowledge Bases
with Disjunctive Information

Yongmei Liu and Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4
{yliu, hector}@cs.toronto.edu

Abstract

This work proposes a new methodology for estab-
lishing the tractability of a reasoning service that
deals with expressive first-order knowledge bases.
It consists of defining a logic that is weaker than
classical logic and that has two properties: first, the
entailment problem can be reduced to the model
checking problem for a small number of character-
istic models; and second, the model checking prob-
lem itself is tractable for formulas with a bounded
number of variables. We show this methodology
in action for the reasoning service previously pro-
posed by Liu, Lakemeyer and Levesque for deal-
ing with disjunctive information. They show that
their reasoning is tractable in the propositional case
and decidable in the first-order case. Here we ap-
ply the methodology and prove that the reasoning
is tractable in the first-order case provided that the
knowledge base and the query both use a bounded
number of variables.

1 Introduction

In the area of Knowledge Representation and Reasoning,
there is a well-known tradeoff between the expressiveness of
the representation language and the computational tractabil-
ity of the associated reasoning task. On the one hand, it is
well accepted that a general-purpose representation language
needs at least the expressiveness of first-order logic; on the
other, the logical entailment problem of first-order logic is un-
decidable. Over the past decades, two main techniques have
been proposed to deal with this computational intractability
problem. The first islanguage restriction, as represented, for
example, by description logics; the idea is to restrict the ex-
pressiveness of the representation language, and especially
the types of incomplete knowledge that can be represented.
The second islimited reasoning, as represented, for exam-
ple, by the work on tautological entailment[Levesque, 1984;
Frisch, 1987; Schaerf and Cadoli, 1995; Patel-Schneider,
1990; Lakemeyer, 1994]; the idea is to weaken the entailment
relation in some way by introducing non-traditional seman-
tics. An emerging direction of research is to combine these
two approaches so as to obtain tractable reasoning for rep-

resentation languages that are not overly restricted and for
entailment relations that are not overly weak.

This line of research is initiated by Levesque[1998]. He
proposes a generalization of a database called aproper KB,
which allows a limited form of incomplete knowledge. Since
the deduction problem for proper KBs remains undecidable,
he defines a reasoning procedureV that is logically sound
and sometimes complete. Liu and Levesque[2003] show that
despite the incomplete knowledge,V can be implemented ef-
ficiently using database techniques.

However, the expressiveness of proper KBs is still quite
limited: knowledge may be incomplete, but no disjunctive
information is allowed. So Lakemeyer and Levesque[2002]
propose an extension to a proper KB called aproper+ KB,
which allows simple forms of disjunctive information. They
also propose a reasoning procedure for proper+ KBs that is
logically sound and agrees withV on proper KBs. However,
the general logical and computational properties of this new
reasoning scheme are left unanalyzed.

A popular way of specifying a limited reasoning service is
through a logic of belief. Instead of proposing a new entail-
ment relation, the idea is to model reasoning asbelief implica-
tion, that is, validity of formulas of the form(BKB ⊃ Bφ),
whereB is a belief operator. With the goal of specifying
a reasoning service for first-order KBs with disjunctive in-
formation, Liu, Lakemeyer and Levesque[2004] propose a
logic of limited belief called the subjective logicSL. Reason-
ing based onSL is logically sound and sometimes complete.
Moreover, they show thatSL-based reasoning with proper+

KBs is tractable in the propositional case and decidable in the
first-order case. The main idea behind these results is that
SL-based reasoning with proper+ KBs reduces to a certain
model checking problem.

In this paper, we continue this line of research and show
thatSL-based reasoning with proper+ KBs is not only decid-
able but alsotractable in the first-order case if both the KB
and the query use a bounded number of variables. This re-
sult is inspired by the graph-based approach to tractability via
the concept of bounded treewidth. For example, in general,
the constraint satisfaction problem (CSP) is NP-complete.
However, researchers have shown that CSP with bounded-
treewidth constraint graphs is in PTIME. Kolaitis and Vardi
[2000] give a logical characterization for bounded treewidth
via bounded-variable first-order logic, and hence show that

this well-known result about CSP can be explained in terms of
the tractability of the model checking problem for bounded-
variable first-order logic. In this paper, we show that the
model checking problem ofSL is tractable for formulas with
a bounded number of variables. Combining this result with
the aforementioned result that reduces reasoning to model
checking, we obtain the main result of this paper.

2 Bounded-Variable First-Order Logic
The main result of this paper is inspired by the tractability
of database query evaluation for first-order formulas with a
bounded number of variables. In this section, we briefly re-
view this result, and discuss its significance.

The complexity of query evaluation has been one of the
main pursuits of database theory. Vardi[1982] proposes two
complexity measures for this: combined complexity and data
complexity. Combined complexity is measured in terms of
the combined size of the database and the query. Data com-
plexity is measured solely in terms of the size of the database
and the size of the query is treated as a constant. Vardi stud-
ies a number of logical languages and shows that combined
complexity is usually one exponential higher than data com-
plexity. For example, the combined complexity of first-order
logic is PSPACE-complete, while its data complexity is in
PTIME. Later Vardi[1995] shows that the exponential gap
between combined and data complexity can be eliminated
by restricting the queries to have a bounded number of vari-
ables. In particular, Vardi proves that the combined complex-
ity of bounded-variable first-order logic is in PTIME. The ba-
sic idea of the proof is to view subformulas of the queries as
subqueries. The evaluation is bottom-up and all intermediate
results are bounded-arity relations.

We let FOj denote the set of all first-order formulas with
at mostj distinct variables. The expressiveness of FOj is
not as limited as it may initially appear because we can reuse
variables. For example, given a binary relationR standing
for an edge in a graph, for anyk, the property “there is a path
of lengthk from a” (herea is a constant) is definable by an
FO2-formula, as shown by the following. We defineφi(u) by
induction:

φ0(u) = true;
φ2i+1(u) = ∃x[R(u, x) ∧ φ2i(x)], for i ≥ 0;
φ2i+2(u) = ∃y[R(u, y) ∧ φ2i+1(y)], for i ≥ 0.

Then for anyk, φk(a) ∈ FO2, and states that there is a path
of lengthk from a. In contrast, the property “there is a clique
of sizek” can only be expressed in FOk.

It turns out that FOj provides a logical characterization
for the combinatorial notion of bounded treewidth. It is
well-known that many algorithmic problems that are “hard”
on arbitrary graphs become “easy” on trees. The concept
of bounded treewidth generalizes the concept of tree while
maintaining its good computational properties. Intuitively,
the treewidth of a graph measures its similarity with a tree.
This notion can be extended to the treewidth of a relational
structure. Kolaitis and Vardi[2000] show that if a finite struc-
ture has treewidth less thanj, then a certain canonical formula
for the structure is definable by an FOj-formula that can be
constructed in polynomial time.

Interestingly, their result also explains a well-known
tractability result about CSP. In general, CSP is NP-complete.
But Dechter and Pearl[1989] and Freuder[1990] show that
CSP with bounded-treewidth constraint graphs is in PTIME.
Kolaitis and Vardi are able to confirm this property by show-
ing that bounded-treewidth CSP reduces to database query
evaluation for FOj .

3 The Subjective LogicSL
We begin with the motivation forSL. As observed by Lake-
meyer and Levesque[2002], although disjunctions can be
used in many ways in a common-sense KB, it has two major
applications: (1) to representrules such as in Horn clauses,
where the associated reasoning is unit propagation; and (2) to
representincomplete knowledgeabout individuals, where the
associated reasoning is case analysis. They argue that requir-
ing a reasoning service to automatically deal with (2) with no
further guidance is asking too much, since this implies the
ability to solve combinatorial puzzles. Motivated by this ob-
servation, Liuet al. [2004] propose reasoning based onSL,
which supports full unit propagation for (1), but only a con-
trolled form of case analysis for (2). In particular, they intro-
duce a family of belief operatorsB0, B1, B2, . . ., whereBk

essentially supports case analysis of depth bounded byk.

3.1 The syntax
The languageL is a standard first-order logic with equality.
The languageSL is a first-order logic with equality whose
atomic formulas are belief atoms of the formBkφ whereφ
is a formula ofL andBk is a modal operator for anyk ≥ 0.
Bkφ is read as “φ is a belief at levelk”.

More precisely, we have the following inductive defini-
tions. There are countably infinite sets of variables and con-
stant symbols, which make up theterms of the language.
The constants behave like standard names, and no other func-
tion symbols are allowed. Theatomsare expressions of the
form P (t1, . . . , tm) whereP is a predicate symbol (exclud-
ing equality) and theti are terms.1 The literals are atoms or
their negations. We useρ to range over literals, and we useρ
to denote the complement ofρ.

The languageL is the least set of expressions such that

1. if ρ is an atom, thenρ ∈ L;

2. if t andt′ are terms, then(t = t′) ∈ L;

3. if φ, ψ ∈ L andx is a variable, then¬φ, (φ ∨ ψ), and
∃xφ ∈ L.

Clauses, which play an important role in the semantic defini-
tion of SL, are inductively defined as follows:

1. a literal is a clause, and is called a unit clause;

2. if c andc′ are clauses, then(c ∨ c′) is a clause.

A clause is identified with the set of literals it contains. For
convenience, a unit clause is identified with the corresponding
literal. Only non-empty clauses appear inL. However, the
empty clause, denoted by2, is used inSL.

1Unlike the other predicate symbols, equality is taken to have a
fixed interpretation (the identity relation) and so behaves more like
a logical symbol.

The languageSL is the least set of expressions such that

1. if φ ∈ L or φ is 2, andk ≥ 0, thenBkφ ∈ SL, and is
called abelief atomof levelk;

2. if t andt′ are terms ofL, then(t = t′) ∈ SL;

3. if α, β ∈ SL andx is a variable, then¬α, (α ∨ β), and
∃xα ∈ SL.

As usual,(α ∧ β), (α ⊃ β), and∀xα are used as abbrevia-
tions; andαx

d is used to denoteα with all free occurrences of
x replaced with constantd.

3.2 Belief reductions
Before presenting the semantics ofSL, we introduce some
preparatory concepts.

When deciding if a sentenceφ is believed, sometimes it is
necessary to decide if related subformulas are believed. The
notation(Bkφ) ↓ is used to denote this belief reduction. For
anyφ ∈ L, theSL formula(Bkφ)↓ is defined as follows:

1. (Bkc)↓ = Bkc, wherec is a clause;

2. (Bk(t = t′))↓ = (t = t′);
3. (Bk¬(t = t′))↓ = ¬(t = t′);
4. (Bk¬¬φ)↓ = Bkφ;

5. (Bk(φ ∨ ψ))↓ = (Bkφ ∨ Bkψ),
whereφ orψ is not a clause;

6. (Bk¬(φ ∨ ψ))↓ = (Bk¬φ ∧ Bk¬ψ);
7. (Bk∃xφ)↓ = ∃xBkφ;

8. (Bk¬∃xφ)↓ = ∀xBk¬φ.

As mentioned earlier,SL supports unit propagation, which
involves applying unit resolution to clauses until no new
clauses are generated. Lets be a set of ground clauses. The
notationUP(s) is used to denote the closure ofs under unit
propagation, that is, the least sets′ satisfying:
1. s ⊆ s′; and 2. ifρ ∈ s′ and{ρ} ∪ c ∈ s′, thenc ∈ s′.
The notationVP(s) is used to denote the following set:
{c | c is a ground clause and there isc′ ∈ UP(s) s.t. c′ ⊆ c}.

Finally, there is a complexity measure‖ · ‖ which maps
formulas into natural numbers. It has the following property:
for anyφ, ‖ Bkφ ‖< ‖ Bk+1φ ‖; and for anyφ that is not
a clause,‖ (Bkφ) ↓‖< ‖Bkφ ‖. We omit its definition here,
but mention that the above property ensures that the following
semantics is well-defined.

3.3 The semantics
Sentences ofSL are interpreted via asetup, which is a set
of non-emptyground clauses, and which specifies what sen-
tences ofL are believed, and consequently what sentences
of SL are true. Intuitively, a setup represents what is explic-
itly believed as a possibly infinite set of ground clauses. The
semantics below then specifies what are the implicit beliefs.

Let s be a setup. For any sentenceα ∈ SL, s |= α (read “s
satisfiesα”) is defined inductively on‖α‖ as follows:

1. s |= (d = d′) iff d andd′ are the same constant;

2. s |= ¬α iff s |6=α;

3. s |= α ∨ β iff s |= α or s |= β;

4. s |= ∃xα iff for some constantd, s |= αx
d ;

5. s |= Bkφ iff one of the following holds:

(a) subsume: k = 0, φ is a clausec, andc ∈ VP(s);
(b) reduce: φ is not a clause ands |= (Bkφ)↓;
(c) split: k > 0 and there is somec ∈ s such that for

all ρ ∈ c, s ∪ {ρ} |= Bk−1φ.

As usual, a sentenceα ∈ SL is valid, written |= α, if for
every setups, we have thats |= α.

As can be seen from the rules of interpretation above, nega-
tion and disjunction have their usual meaning inSL. The
rules for equality and quantification are justified by the fact
that the constants are taken to satisfy the unique name as-
sumption and an infinitary version of domain closure. So all
the novelty inSL is due to the interpretation of theBk opera-
tors. Intuitively, the rules propose three different justifications
for believing a sentenceφ at levelk:

1. φ is a clause,k = 0, and after doing unit propagation on
our explicit beliefs, we end up with a subclause ofφ;

2. we already have appropriate beliefs about the subformu-
las ofφ, for example, believing both conjuncts of a con-
junction, or some instance of an existential;

3. there is a clause in our explicit beliefs that if we split,
that is, if we augment our beliefs by a literal in that
clause, then in all cases we end up believingφ at level
k − 1.

All three of these deal with disjunction but in quite different
ways, which we now illustrate with an example.
Example 1 We assume three predicates:S(x) saying thatx
is a student,G(x) saying thatx is a graduate student, andI(x)
saying thatx is Irish. We use constanta to stand for Ann and
b for Bob. LetΣ be the set of sentences

{G(a),S(b), I(a) ∨ I(b), ∀x(G(x) ⊃ S(x))},
and lets be the setup defined as the set of instances ofΣ:
{G(a),S(b), I(a) ∨ I(b),¬G(a) ∨ S(a),¬G(b) ∨ S(b), . . .}.

Let φ be∃x(I(x) ∧ S(x)). We now show thats |= B1φ.
Clearly, s ∪ {I(a)} |= B0I(a) by subsumption. Also,

s ∪ {I(a)} |= B0S(a) by subsumption, sinceS(a) can be
obtained fromG(a) and¬G(a) ∨ S(a) by unit propagation.
Thuss ∪ {I(a)} |= B0(I(a) ∧ S(a)) by reduction, and hence
s∪{I(a)} |= B0φ by reduction. Similarly,s∪{I(b)} |= B0φ.
Thuss |= B1φ by splitting on the clauseI(a) ∨ I(b).

4 SL-based Reasoning with Proper+ KBs
SL is intended to serve as a foundation for a semantically co-
herent and computationally attractive reasoning service. The
idea is to model the reasoning service as belief implication,
that is, validity of formulas of the form(B0Σ ⊃ Bkφ),
whereΣ is a KB, andφ is a query. We writeΣ |=k φ if
(B0Σ ⊃ Bkφ) is valid. TheSL-based reasoning problem
(for a fixed valuek) is as follows: given a KBΣ in L and a
formulaφ in L, decide whether or notΣ |=k φ. SL-based
reasoning is always classically sound: ifΣ |=k φ, thenΣ
classically entailsφ [Liu et al., 2004]. The converse, logical
completeness, does not hold in general. Moreover, in general,
|=k is not decidable. To see where|=k becomes decidable, we
first define proper+ KBs.

4.1 Proper+ KBs
It is easy to show that if a KB is a simple database, thenSL-
based reasoning coincides with classical logical entailment
and is also decidable. However, a database does not allow any
form of incomplete knowledge. Levesque[1998] proposes a
generalization of a database called aproper KB, equivalent
to a (possibly infinite) consistent set of ground literals. But
while a proper KB allows atomic formulas to be unknown,
it does not allow any form of disjunctive information. For
example, in a proper KB, we cannot express “Ann or Bob
is Irish” or “Every graduate student is a student” as in the
example above. So Lakemeyer and Levesque[2002] propose
an extension to a proper KB called a proper+ KB, equivalent
to a possibly infinite set of ground clauses. We now define
these notions formally.

We usee to range overewffs, that is, quantifier-free for-
mulas whose only predicate is equality. We use∀φ to denote
the universal closure ofφ. We useθ to range over substitu-
tions of all variables by constants, and writeφθ as the result
of applying the substitutionθ to φ.

Definition 1 Let e be an ewff andc a clause. Then a formula
of the form∀(e ⊃ c) is called a∀-clause. A KB Σ is proper+

if it is a finite non-empty set of∀-clauses. Given a proper+

KB Σ, gnd(Σ) is defined as{cθ | ∀(e ⊃ c) ∈ Σ and|= eθ}.
A KB Σ is proper if it is proper+ andgnd(Σ) is a consistent
set of ground literals.

Note thatgnd(Σ) is anSL setup, as in the example above.
Despite the limitations, proper+ KBs are expressive

enough for many real-world applications. To get a feel for
this, consider the following example from[Liu et al., 2004].

Example 2 Let Σ be the following KB with a single predi-
cateC(p1, p2) saying that the two persons are compatible:

1. ∀x∀y.C(x, y) ⊃ C(y, x);
2. ∀x.C(x,ann) ∨ C(x,bob);
3. ¬C(bob, fred);
4. C(carl, eve) ∨ C(carl, fred);
5. ∀x.x 6= bob∧ x 6= carl ⊃ C(dan, x);
6. ¬C(eve, ann) ∨ ¬C(eve, fred).
Then we have the following:

1. Σ |=0 C(fred, ann);
2. Σ |=1 ∀x∃yC(x, y);
3. Σ |=1 ∃x∃y∃z[C(x, y) ∧ C(x, z) ∧ ¬C(y, z)];
4. Σ |=2 ∃x∃y[x 6= y ∧ C(x, carl) ∧ C(y, carl)], but

Σ 6|=1 ∃x∃y[x 6= y ∧ C(x, carl) ∧ C(y, carl)].

By Theorem 1 below,Σ |=k φ iff gnd(Σ) |= Bkφ. Thus
the above can be proved by showing thatgnd(Σ) |= Bkφ (or
gnd(Σ) 6|= Bkφ).

4.2 Properties ofSL-based reasoning
As noted above,SL-based reasoning is classically sound but
incomplete. However, Liuet al. present the following two
results. First,SL-based reasoning is classically complete for
proper KBs and queries in a certain normal form calledNF .

Second,SL-based reasoning is “eventually complete” for a
propositional proper+ KB Σ and a propositional queryφ in
NF : if Σ classically entailsφ, then there is ak such that
Σ |=k φ. As to the computational property, Liuet al. show
that for proper+ KBs,SL-based reasoning reduces to a model
checking problem (for a possibly infinite model):

Theorem 1 ([Liu et al., 2004]) LetΣ be proper+.
ThenΣ |=k φ iff gnd(Σ) |= Bkφ.

Using this theorem, they show thatSL-based reasoning with
proper+ KBs is tractable in the propositional case and decid-
able in the first-order case.

5 A Tractability Result
In this section, we show thatSL-based reasoning with
proper+ KBs is not only decidable but also tractable in the
first-order case provided that both the KB and the query use
a bounded number of variables.

The main ideas behind this result are as follows. First,
by Theorem 1, it suffices to prove that deciding whether
gnd(Σ) |= Bkφ is tractable when bothΣ andφ use a bounded
number of variables. Althoughgnd(Σ) may well be infinite,
as shown in[Liu et al., 2004], it suffices to consider the re-
striction ofgnd(Σ) to a finite set of constants, which consists
of the constants in eitherΣ or φ, and a few extra ones. More-
over, the fact thatΣ uses a bounded number of variables en-
sures that this restriction has a polynomial size. Second, as in
the case of database query evaluation, instead of answering
a Boolean query, we compute the set of substitutionθ such
thatgnd(Σ) |= Bkφθ whereφ is a formula which may have
free variables. Although this set may well be infinite, it has
a finite representation, which is what we actually compute.
As in the tractability result of[Vardi, 1995], we view subfor-
mulas ofφ as subqueries, and the fact thatφ uses a bounded
number of variables ensures that all intermediate results are
bounded-arity database relations.

In the following, we useLj to denote the set of formulas
from L whose variables are fromX = {x1, . . . , xj}, where
j ≥ 1. We useθ to range over substitutions of all variables
x1, . . . , xj by constants. We useD to range over finite sets of
constants. We useθ ∈ D to mean thatθ only takes constants
fromD. We letgnd(Σ)|D denote the restriction ofgnd(Σ) to
D, that is, the set of clauses fromgnd(Σ) that only mention
constants fromD. LetΓ be a set of formulas. We useH(Γ) to
denote the set of constants appearing inΓ, and we useH+

m(Γ)
to denote the union of the constants appearing inΓ andm
extra ones.

5.1 Answers to open queries
Definition 2 Let Σ ⊆ Lj be proper+, φ ∈ Lj , andk ≥ 0.
We defineAns(Σ, φ, k) as the set{θ | gnd(Σ) |= Bkφθ}.

However,Ans(Σ, φ, k) may well be infinite. Fortunately, we
can find a finite representation for it. We letAns(Σ, φ, k)|D
denote the restriction ofAns(Σ, φ, k) to D, that is, the set
{θ ∈ D | gnd(Σ) |= Bkφθ}.

Proposition 2 LetD beH+
m(Σ∪{φ}) for somem ≥ j. Then

Ans(Σ, φ, k)|D is a finite representation forAns(Σ, φ, k) in
the following sense:

For any substitutionθ, θ ∈ Ans(Σ, φ, k) iff θ′ ∈
Ans(Σ, φ, k)|D, whereθ′ is like θ except that for
all xi (i = 1, . . . , j) s.t. θ(xi) 6∈ D, θ′ maps them
into unique representatives fromD−H(Σ ∪ {φ}).

Example 3 Let Σ be the following simple KB:

{∀x∀y.C(x, y) ⊃ C(y, x), ∀x.x 6= ann⊃ C(x,bob)}.
Let φ be C(x, y). ThenAns(Σ, φ, 0) = {(c, bob) | c 6=
ann} ∪ {(bob, c) | c 6= ann}, which is an infinite set. Now
let D = {ann, bob, carl, dan}. ThenAns(Σ, φ, 0, D) =
{(bob, bob), (carl, bob), (dan, bob), (bob, carl), (bob, dan)},
and it makes a finite representation forAns(Σ, φ, 0). First,
consider(bob, eve). Sinceeve 6∈ D, we choosecarl as its
representative; since(bob, carl) ∈ Ans(Σ, φ, 0, D), we
know (bob, eve) ∈ Ans(Σ, φ, 0). Now consider(eve, fred).
Since neitherevenor fred is in D, we choosecarl anddan
as their representatives; since(carl, dan) 6∈ Ans(Σ, φ, 0, D),
we know(eve, fred) 6∈ Ans(Σ, φ, 0).

5.2 The algorithm
We first define two operations to be used in the algorithm.
By an X-relation over domainD, we mean a subset of
{θ | θ ∈ D}. We useθ(x/d) to denote the substitution
which is the same asθ except thatx is assignedd.

Definition 3 LetR be anX-relation over domainD, and let
x ∈ X . Thedivision of R wrt x, written δx(R), is the set
{θ ∈ D | ∀d ∈ D, θ(x/d) ∈ R}. Theprojectionof R wrt x,
writtenπx(R), is the set{θ ∈ D | ∃d ∈ D, θ(x/d) ∈ R}.

Note that our definition of projection (or division) is some-
what different from that in the database literature: ours is the
Cartesian product of theirs and the domain. We use this defi-
nition so as to simplify the presentation of the procedure be-
low, where every intermediate relation is anX-relation.

Example 4 LetX = {x, y},D = {a, b, c}, and
R = {(a, a), (b, a), (c, a), (a, b)}. Then
δx(R) = {(a, a), (b, a), (c, a)}, and
πx(R) = {(a, a), (b, a), (c, a), (a, b), (b, b), (c, b)}.

Given a proper+ KB Σ ⊆ Lj , a queryφ ∈ Lj , a natural
numberk, and a finite set of constantsD, the procedureE
returns anX-relation over domainD as follows:

1. E(Σ, (t = t′), k,D) = {θ ∈ D | tθ is identical tot′θ}.
Heret andt′ are variables or constants.

2. E(Σ,¬(t= t′), k,D)={θ ∈D | tθ is distinct fromt′θ}.

3. If φ is a clause andk = 0, thenE(Σ, φ, k,D) =
{θ ∈ D | there isc ∈ UP(gnd(Σ)|D) s.t. c ⊆ φθ}.
This is a subsumption operation, and we will give a de-
tailed procedure for it in the proof of Lemma 8 below.

4. If φ is a clause andk > 0, thenE(Σ, φ, k,D) =
S(Σ, φ, k,D), which we use as an abbreviation for

⋃

c∈gnd(Σ)|D

⋂

ρ∈c

E(Σ ∪ {ρ}, φ, k − 1, D).

HereS represents a splitting operation, that is, we letc
range over clauses ingnd(Σ)|D and take the union of the
following: the intersection ofE(Σ ∪ {ρ}, φ, k − 1, D)
whereρ ranges over literals inc.

5. E(Σ,¬¬ψ, k,D) = E(Σ, ψ, k,D).
6. If φ is (ψ ∨ η), but not a clause, thenE(Σ, φ, k,D)

= S(Σ, φ, k,D) ∪ E(Σ, ψ, k,D) ∪ E(Σ, η, k,D).
7. E(Σ,¬(ψ∨η), k,D)=E(Σ,¬ψ, k,D)∩E(Σ,¬η, k,D).
8. E(Σ,∃xψ,k,D)=S(Σ, ∃xψ,k,D) ∪ πx(E(Σ, ψ,k,D)).
9. E(Σ,¬∃xψ, k,D) = δx(E(Σ,¬ψ, k,D)).

We now illustrate Cases 1-4 with an example.

Example 5 Let Σ be the following KB:

{ ∀x.C(x,ann) ∨ C(x,bob),¬C(carl, bob),
C(dan, ann)⊃C(dan, carl),C(dan, bob)⊃C(dan, carl)}.

LetD = {ann, bob, carl, dan, eve}. Then

1. E(Σ, (x = y), 0, D) = {(c, c) | c ∈ D}.

2. E(Σ,¬(x=ann), 0,D)={(c, d) |c, d∈D, andc 6=ann}.

3. E(Σ,C(x, y), 0, D)={(carl, ann)}. We get(carl, ann)
becauseC(carl, ann) can be obtained fromgnd(Σ)|D by
unit propagation.

4. E(Σ,C(x, y), 1, D) = {(carl, ann), (dan, carl)}.
We get(dan, carl) because it appears in
bothE(Σ ∪ {C(dan, ann)},C(x, y), 0, D)
andE(Σ ∪ {C(dan, bob)},C(x, y), 0, D).

5.3 Correctness proof
The following theorem states that ifD contains all the con-
stants inΣ ∪ {φ} and at leastj(k + 2) extra ones, then the
above procedure computesAns(Σ, φ, k)|D, which is a finite
representation forAns(Σ, φ, k) by Proposition 2.

Theorem 3 Let Σ ⊆ Lj be proper+, φ ∈ Lj , andk ≥ 0.
Let D be H+

m(Σ ∪ {φ}) for somem ≥ j(k + 2). Then
E(Σ, φ, k,D) = Ans(Σ, φ, k)|D.

The proof is by induction onφ. Cases 1, 2, 5, 7, and 9 use the
following properties of beliefs from[Liu et al., 2004]:

|= Bke ≡ e, wheree is an ewff

|= Bk¬¬φ ≡ Bkφ

|= Bk(φ ∧ ψ) ≡ Bkφ ∧ Bkψ

|= Bk∀xφ ≡ ∀xBkφ

The other cases use the following lemmas, which justify our
treatment of subsumption, quantification, and splitting, re-
spectively. We letw(Σ) denote the maximum number of vari-
ables in a∀-clause ofΣ.

Lemma 4 LetD beH+
m(Σ) for somem ≥ w(Σ). Suppose

that c ∈ UP(gnd(Σ)). Thenc′ ∈ UP(gnd(Σ)|D), wherec′ is
like c except that constants not inD are replaced with unique
representatives fromD −H(Σ).

Lemma 5 Let φ be a formula with a single free variablex.
Let b andd be two constants that do not appear inΣ or φ.
Then gnd(Σ) |= Bkφ

x
b iff gnd(Σ) |= Bkφ

x
d .

Lemma 6 Let D beH+
m(Σ ∪ {φ}) for somem ≥ w(Σ).

Suppose that gnd(Σ) |= Bkφ by splitting onc ∈ gnd(Σ).
Then gnd(Σ) |= Bkφ by splitting on somec′ ∈ gnd(Σ)|D.

5.4 Complexity analysis
We begin with two lemmas about the complexity of database
operations and subsumption operations. We letj denote the
number of variables.

Lemma 7 Each database operation used in procedureE (se-
lection, intersection, union, division and projection) can be
done inO(nj) time, wheren is the size ofD.

Proof: Each relation is of sizeO(nj), and is always kept in
sorted form. Each operation can be done in one pass of the
input relations, and the result remains sorted.

Lemma 8 Let φ be a clause. LetD be of sizeO(n), where
n is the size ofΣ. ThenE(Σ, φ, 0, D) can be computed in
O(nj+1) time.

Proof: The following procedure computesE(Σ, φ, 0, D):
1. Computegnd(Σ)|D.

2. Perform unit propagation overgnd(Σ)|D. LetU0 be the
set of minimum clauses ofUP(gnd(Σ)|D).

3. For eachc ∈ U0, check whether it can be unified with a
subset ofφ; if so, mark thoseθ ∈ D such thatc ⊆ φθ.
Return the set of those markedθ.

Theorem 9 Let Σ ⊆ Lj be proper+, φ ∈ Lj , andk ≥ 0.
Then whetherΣ |=k φ can be decided inO((lnj+1)k+1)
time, wherel is the size ofφ, andn is the size ofΣ.

Proof: To decide ifΣ |=k φ, we letD = H+
j(k+2)(Σ ∪ {φ}),

computeE(Σ, φ, k,D), and check whether it is empty.
Let f(k) denote the time complexity of computing

E(Σ, φ, k,D). Supposek > 0. For each of thel clauses
and logical operators inφ, we perform a database operation
and/or a splitting operation. Each database operation can be
done inO(nj) time by Lemma 7. Each splitting operation
considersO(nj+1) clauses and takes the union of the corre-
sponding results. Thusf(k) = O(lnj+1 · (f(k − 1) + nj)).
Supposek = 0. For each of thel clauses and logical operators
in φ, we perform a database operation or a subsumption oper-
ation. Each subsumption operation can be done inO(nj+1)
time by Lemma 8. Thusf(0) = O(lnj+1). Solving the re-
currence, we havef(k) = O((lnj+1)k+1).

This procedure grows exponentially with bothj (the number
of variables) andk (the depth of case splitting).

Obviously, there are two places where we could improve
procedureE. First, it is possible to reduce the number of
clauses we need to consider during a splitting operation. Sec-
ond, it is also possible to use incremental unit propagation,
that is, we perform unit propagation in the very beginning,
and then after we add a literal by splitting, we do further unit
propagation incurred by this literal.

6 Conclusions
In this paper, we have showed thatSL-based reasoning with
proper+ KBs is tractable in the first-order case when both
the KB and the query use a bounded number of variables.
The procedure we propose nonetheless scales exponentially
with the number of variables and the depth of case analysis.

But we expect small values of these parameters to suffice ex-
cept when the KB encodes a combinatorial puzzle or some
other “mathematically interesting” problem. In this sense,
SL provides a computationally viable reasoning service for
first-order knowledge bases with disjunctive information.

We believe that the contribution of this paper lies not only
in the technical result but also in the methodology. The con-
cept of bounded treewidth has proven valuable for obtain-
ing many tractability results. Kolaitis and Vardi are able to
explain this in terms of the tractability of the model check-
ing problem for bounded-variable first-order logic. What we
have done here is to show how this idea could be applied to
a radically different form of model checking, that is, when
the models are the setups of the belief logicSL. In the fu-
ture, we would like to take this idea even further, and find
tractable reasoning services for more expressive representa-
tion languages, for example, for knowledge bases that include
unknown individuals.

References
[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree clustering

for constraint networks.Artificial Intelligence, 38(3):353–366.

[Freuder, 1990] E. C. Freuder. Complexity ofK-tree structured
constraint satisfaction problems. InProc. AAAI-90, pages 4–9.

[Frisch, 1987] A. M. Frisch. Inference without chaining. InProc.
IJCAI-87, pages 515–519, 1987.

[Kolaitis and Vardi, 2000] Ph. G. Kolaitis and M. Y. Vardi.
Conjunctive-query containment and constraint satisfaction.Jour-
nal of Computer and System Sciences, 61(2):14–23, 2000.

[Lakemeyer and Levesque, 2002] G. Lakemeyer and H. J.
Levesque. Evaluation-based reasoning with disjunctive in-
formation in first-order knowledge bases. InProc. KR-02, pages
73–81, 2002.

[Lakemeyer, 1994] G. Lakemeyer. Limited reasoning in first-order
knowledge bases.Artificial Intelligence, 71(2):213–255, 1994.

[Levesque, 1984] H. J. Levesque. A logic of implicit and explicit
belief. InProc. of AAAI-84, pages 198–202, 1984.

[Levesque, 1998] H. J. Levesque. A completeness result for reason-
ing with incomplete first-order knowledge bases. InProc. KR-98,
pages 302–332, 1998.

[Liu and Levesque, 2003] Y. Liu and H. J. Levesque. A tractability
result for reasoning with incomplete first-order knowledge bases.
In Proc. IJCAI-03, pages 83–88, 2003.

[Liu et al., 2004] Y. Liu, G. Lakemeyer, and H. J. Levesque. A logic
of limited belief for reasoning with disjunctive information. In
Proc. KR-04, pages 587–597, 2004.

[Patel-Schneider, 1990] P. F. Patel-Schneider. A decidable first-
order logic for knowledge representation.Journal of Automated
Reasoning, 6:361–388, 1990.

[Schaerf and Cadoli, 1995] M. Schaerf and M. Cadoli. Tractable
reasoning via approximation.Artificial Intelligence, 74:249–310.

[Vardi, 1982] M. Y. Vardi. The complexity of relational query lan-
guages (extended abstract). InProc. 14th Annual ACM Sympo-
sium on Theory of Computing, pages 137–146, 1982.

[Vardi, 1995] M. Y. Vardi. On the complexity of bounded-variable
queries. In Proc. 14th ACM Symposium on Principles of
Database Systems (PODS ’95), pages 266–276, 1995.

